February 18, 2004
In this article, we show how to recast the Hubbard model in one dimension in a hydrodynamic language and use the path integral approach to compute the one-particle Green function. We compare with the Bethe ansatz results of Schulz and find exact agreement with the formulas for spin and charge velocities and anomalous exponent in weak coupling regime. These methods may be naturally generalized to more than one dimension by simply promoting wavenumbers to wavevectors.
Similar papers 1
February 14, 2010
The aim of this paper is to present a self contained introduction to the Hubbard model and some of its applications.The paper consists of two parts: the first will introduce the basic notions of the Hubbard model starting from the motivation for its development to the formulation of the Hamiltonian,and some methods of calculation within the model. The second part will discuss some applications of the model to 1D and 2D systems,based on a combination of the author's results wi...
October 24, 2007
In this paper we study the charge and spin currents transported by the elementary excitations of the one-dimensional Hubbard model. The corresponding current spectra are obtained by both analytic methods and numerical solution of the Bethe-ansatz equations. For the case of half-filling, we find that the spin-triplet excitations carry spin but no charge, while charge $\eta$-spin triplet excitations carry charge but no spin, and both spin-singlet and charge $\eta$-spin-singlet ...
June 19, 2017
We outline a general formalism of hydrodynamics for quantum systems with multiple particle species which undergo completely elastic scattering. In the thermodynamic limit, the complete kinematic data of the problem consists of the particle content, the dispersion relations, and a universal dressing transformation which accounts for interparticle interactions. We consider quantum integrable models and we focus on the one-dimensional fermionic Hubbard model. By linearizing hydr...
March 31, 2021
The Hubbard model is the simplest model of interacting fermions on a lattice and is of similar importance to correlated electron physics as the Ising model is to statistical mechanics or the fruit fly to biomedical science. Despite its simplicity, the model exhibits an incredible wealth of phases, phase transitions, and exotic correlation phenomena. While analytical methods have provided a qualitative description of the model in certain limits, numerical tools have shown impr...
April 28, 2008
We present the exact solution of the one-dimensional extended Hubbard model in the atomic limit within the Green's function and equation of motion formalism. We provide a comprehensive and systematic analysis of the model by considering all the relevant response and correlation functions as well as thermodynamic quantities in the whole parameter space. At zero temperature we identify four phases in the plane (U,n) [U is the onsite potential and n is the filling] and relative ...
August 8, 2022
Recent experimental results suggest that a particular hydrodynamic theory describes charge fluctuations at long wavelengths in the square-lattice Hubbard model. Due to the continuity equation, the correlation functions for the charge and the current are directly connected: the parameters of the effective hydrodynamic model thus determine the optical conductivity. Here we investigate the validity of the proposed hydrodynamic theory in the full range of parameters of the Hubbar...
September 6, 2012
Finite-temperature T>0 transport properties of integrable and nonintegrable one-dimensional (1D) many-particle quantum systems are rather different, showing in the metallic phases ballistic and diffusive behavior, respectively. The repulsive 1D Hubbard model is an integrable system of wide physical interest. For electronic densities $n\neq1$ it is an ideal conductor, with ballistic charge transport for T larger or equal to 0. In spite that it is solvable by the Bethe ansatz, ...
January 8, 1997
We give the details of the calculation of the spectral functions of the 1D Hubbard model using the spin-charge factorized wave-function for several versions of the U -> +\infty limit. The spectral functions are expressed as a convolution of charge and spin dynamical correlation functions. A procedure to evaluate these correlation functions very accurately for large systems is developed, and analytical results are presented for the low energy region. These results are fully co...
August 2, 2010
A simple, general and practically exact method is developed to calculate the ground states of 1D macroscopic quantum systems with translational symmetry. Applied to the Hubbard model, a modest calculation reproduces the Bethe Ansatz results.
December 13, 1993
The spectral properties of the 1-D Hubbard model are obtained from quantum Monte Carlo simulations using the maximum entropy method. The one-particle excitations are characterized by dispersive cosine-like bands. Velocities for spin- and charge excitations are obtained that lead to a conformal charge c=0.98 +/- 0.05 for the largest system simulated (N=84). An exact sum-rule for the spin-excitations is fulfilled accurately with deviations of at most 10% only around 2 kF.