January 22, 2002
We investigate the one-dimensional Hubbard model with an additional bond-charge interaction, recently considered in the description of compounds that exhibit strong 1D features above the temperature of ordered phases. The partition function of the model is exactly calculated for a value of the bond-charge coupling; the behavior of the specific heat and spin susceptibility as a function of temperature is derived at arbitrary filling, and particularly discussed across the occur...
February 28, 1999
We consider density-density correlations in the one-dimensional Hubbard model at half filling. On intuitive grounds one might expect them to exhibit an exponential decay. However, as has been noted recently, this is not obvious from the Bethe Ansatz/conformal field theory (BA/CFT) approach. We show that by supplementing the BA/CFT analysis with simple symmetry arguments one can easily prove that correlations of the lattice density operators decay exponentially.
October 27, 2005
It is shown that it is possible to bosonize fermions in any number of dimensions using the hydrodynamic variables, namely the velocity potential and density. The slow part of the Fermi field is defined irrespective of dimensionality and the commutators of this field with currents and densities are exponentiated using the velocity potential as conjugate to the density. An action in terms of these canonical bosonic variables is proposed that reproduces the correct current and d...
March 20, 2014
Finite lattice models are a prototype for strongly correlated quantum systems and capture essential properties of condensed matter systems. With the dramatic progress in ultracold atoms in optical lattices, finite fermionic Hubbard systems have become directly accessible in experiments, including their ultrafast dynamics far from equilibrium. Here, we present a theoretical approach that is able to treat these dynamics in any dimension and fully includes inhomogeneity effects....
May 25, 1999
In this paper we report results from a systematic strong-coupling expansion of the Bose-Hubbard model in one and two spatial dimensions. We obtain numerically exact results for the structure factor and the spectrum of single particle and single hole excitations in the Mott insulator. This enables the determination of the zero-temperature phase diagram and the location of the critical endpoints of the Mott lobes. In one dimension we confirm the occurrence of reentrance behavio...
February 17, 2005
We give the first rigorous (non perturbative) proof of Luttinger liquid behavior in the one dimensional Hubbard model, for small repulsive interaction and values of the density different from half filling. The analysis is based on the combination of multiscale analysis with Ward identities bases on a hidden and approximate local chiral gauge invariance. No use is done of exact solutions or special integrability properties of the Hubbard model, and the results can be in fact e...
July 3, 2023
We present analytical results of fundamental properties of one-dimensional (1D) Hubbard model with a repulsive interaction, ranging from fractional excitations to universal thermodynamics, interaction-driven criticality, correlation functions, Contact susceptibilities and quantum cooling. Using the exact solutions of the Bethe Ansatz equations of the Hubbard model, we first rigorously calculate the gapless spin and charge excitations, exhibiting exotic features of fractionali...
November 29, 2013
After a quantum quench, a sudden change of parameters, generic many particle quantum systems are expected to equilibrate. A few collisions of quasiparticles are usually sufficient to establish approximately local equilibrium. Reaching global equilibrium is, however, much more difficult as conserved quantities have to be transported for long distances to build up a pattern of fluctuations characteristic for equilibrium. Here we investigate the quantum quench of the one-dimensi...
June 27, 2000
We develop a time-dependent Gutzwiller approximation (GA) for the Hubbard model analogous to the time-dependent Hartree-Fock (HF) method. The formalism incorporates ground state correlations of the random phase approximation (RPA) type beyond the GA. Static quantities like ground state energy and double occupancy are in excellent agreement with exact results in one dimension up to moderate coupling and in two dimensions for all couplings. We find a substantial improvement ove...
March 22, 2021
The repulsive Hubbard model has been immensely useful in understanding strongly correlated electron systems, and serves as the paradigmatic model of the field. Despite its simplicity, it exhibits a strikingly rich phenomenology which is reminiscent of that observed in quantum materials. Nevertheless, much of its phase diagram remains controversial. Here, we review a subset of what is known about the Hubbard model, based on exact results or controlled approximate solutions in ...