March 5, 2004
Similar papers 2
October 21, 2013
The dynamics of non-equilibrium Ising model with parallel updates is investigated using a generalized mean field approximation that incorporates multiple two-site correlations at any two time steps, which can be obtained recursively. The proposed method shows significant improvement in predicting local system properties compared to other mean field approximation techniques, particularly in systems with symmetric interactions. Results are also evaluated against those obtained ...
October 30, 2006
We present an efficient algorithm for calculating the properties of Ising models in two dimensions, directly in the spin basis, without the need for mapping to fermion or dimer models. The algorithm gives numerically exact results for the partition function and correlation functions at a single temperature on any planar network of N Ising spins in O(N^{3/2}) time or less. The method can handle continuous or discrete bond disorder and is especially efficient in the case of bon...
November 3, 1994
We review recent numerical progress in the study of finite dimensional strongly disordered magnetic systems like spin glasses and random field systems. In particular we report in some details results for the critical properties and the non-equilibrium dynamics of Ising spin glasses. Furthermore we present an overview over recent investigations on the random field Ising model and finally of quantum spin glasses.
December 19, 2000
We present a study of the influence of different types of disorder on systems in the Ising universality class by employing both a dynamical field theory approach and extensive Monte Carlo simulations. We reproduce some well known results for the case of quenched disorder (random temperature and random field), and analyze the effect of four different types of time-dependent disorder scarcely studied so far in the literature. Some of them are of obvious experimental and theoret...
November 8, 2021
The Ising model is an equilibrium stochastic process used as a model in several branches of science including magnetic materials, geophysics, neuroscience, sociology and finance. Real systems of interest have finite size and a fixed coupling matrix exhibiting quenched disorder. Exact methods for the Ising model, however, employ infinite size limits, translational symmetries of lattices and the Cayley tree, or annealed structures as ensembles of networks. Here we show how the ...
July 15, 2013
We investigate the one-dimensional long-range random-field Ising magnet with Gaussian distribution of the random fields. In this model, a ferromagnetic bond between two spins is placed with a probability $p \sim r^{-1-\sigma}$, where $r$ is the distance between these spins and $\sigma$ is a parameter to control the effective dimension of the model. Exact ground states at zero temperature are calculated for system sizes up to $L = 2^{19}$ via graph theoretical algorithms for f...
March 10, 2017
We investigate a kinetic Ising model with several single-spin flip dynamics (including Metropolis and heat-bath) on quenched and annealed random regular graphs. As expected, on the quenched structures all proposed algorithms reproduce the same results since the conditions for the detailed balance and the Boltzmann distribution in an equilibrium are satisfied. However, on the annealed graphs situation is far less clear -- the network annealing disturbs the equilibrium moving t...
June 19, 2013
We present a new approach to a classical problem in statistical physics: estimating the partition function and other thermodynamic quantities of the ferromagnetic Ising model. Markov chain Monte Carlo methods for this problem have been well-studied, although an algorithm that is truly practical remains elusive. Our approach takes advantage of the fact that, for a fixed bond strength, studying the ferromagnetic Ising model is a question of counting particular subgraphs of a gi...
December 1, 2017
In this paper, we extend the full replica symmetry breaking scheme to the Ising spin glass on a random regular graph. We propose a new martingale approach, that overcomes the limits of the Parisi-M\'ezard cavity method, providing a well-defined formulation of the full replica symmetry breaking problem in random regular graphs. Finally, we define the order parameters of the system and get a set of self-consistency equations for the order parameters and the free energy. We face...
April 20, 2016
We review some of the techniques used to study the dynamics of disordered systems subject to both quenched and fast (thermal) noise. Starting from the Martin-Siggia-Rose path integral formalism for a single variable stochastic dynamics, we provide a pedagogical survey of the perturbative, i.e. diagrammatic, approach to dynamics and how this formalism can be used for studying soft spin models. We review the supersymmetric formulation of the Langevin dynamics of these models an...