March 5, 2004
Similar papers 5
May 10, 1994
Spin models on quenched random graphs are related to many important optimization problems. We give a new derivation of their mean-field equations that elucidates the role of the natural order parameter in these models.
May 6, 2002
We analyse the relationship between dynamics and configuration space structure of Ising spin glass systems. The exact knowledge of the structure of the low--energy landscape is used to study the relaxation of the system by random walk in the configuration space. The influence of the size of the valleys, clusters and energy barriers and the connectivity between them on the spin correlation function is shown.
July 3, 2023
We study the stochastic relaxation dynamics of the Ising p-spin model on a random graph, a well-known model with glassy dynamics at low temperatures. We introduce and discuss a new closure scheme for the master equation governing the continuous-time relaxation of the system, that translates into a set of differential equations for the evolution of local probabilities. The solution to these dynamical mean-field equations describes very well the out-of-equilibrium dynamics at h...
April 20, 2023
We study the low-energy physics of the critical (2+1)-dimensional random transverse-field Ising model. The one-dimensional version of the model is a paradigmatic example of a system governed by an infinite-randomness fixed point, for which many results on the distributions of observables are known via an asymptotically exact renormalization group (RG) approach. In two dimensions, the same RG rules have been implemented numerically, and demonstrate a flow to infinite randomnes...
May 16, 2014
We consider the problem of predicting the spin states in a kinetic Ising model when spin trajectories are observed for only a finite fraction of sites. In a Bayesian setting, where the probabilistic model of the spin dynamics is assumed to be known, the optimal prediction can be computed from the conditional (posterior) distribution of unobserved spins given the observed ones. Using the replica method, we compute the error of the Bayes optimal predictor for parallel discrete ...
August 2, 1995
We discuss the utility of analytical and numerical investigation of spin models, in particular spin glasses, on ordinary ``thin'' random graphs (in effect Feynman diagrams) using methods borrowed from the ``fat'' graphs of two dimensional gravity. We highlight the similarity with Bethe lattice calculations and the advantages of the thin graph approach both analytically and numerically for investigating mean field results.
June 30, 2004
We present exact expressions for hysteresis loops in the ferromagnetic random field Ising model in the limit of zero temperature and zero driving frequency for an arbitrary initial state of the model on a Bethe lattice. This work extends earlier results that were restricted to an initial state with all spins pointing parallel to each other.
August 30, 2014
We propose a generic framework to describe classical Ising-like models defined on arbitrary graphs. The energy spectrum is shown to be the Hadamard transform of a suitably defined sparse "coding" vector associated with the graph. We expect that the existence of a fast Hadamard transform algorithm (used for instance in image ccompression processes), together with the sparseness of the coding vector, may provide ways to fasten the spectrum computation.. Applying this formalism ...
July 30, 2010
In the presented article we present an algorithm for the computation of ground state spin configurations for the 2d random bond Ising model on planar triangular lattice graphs. Therefore, it is explained how the respective ground state problem can be mapped to an auxiliary minimum-weight perfect matching problem, solvable in polynomial time. Consequently, the ground state properties as well as minimum-energy domain wall (MEDW) excitations for very large 2d systems, e.g. latti...
July 17, 1998
It has been known for a long time that the ground state problem of random magnets, e.g. random field Ising model (RFIM), can be mapped onto the max-flow/min-cut problem of transportation networks. I build on this approach, relying on the concept of residual graph, and design an algorithm that I prove to be exact for finding all the minimum cuts, i.e. the ground state degeneracy of these systems. I demonstrate that this algorithm is also relevant for the study of the ground st...