May 17, 2004
Similar papers 3
February 22, 2012
A key challenge within the social network literature is the problem of network generation - that is, how can we create synthetic networks that match characteristics traditionally found in most real world networks? Important characteristics that are present in social networks include a power law degree distribution, small diameter and large amounts of clustering; however, most current network generators, such as the Chung Lu and Kronecker models, largely ignore the clustering ...
July 4, 2003
It appeared recently that the classical random graph model used to represent real-world complex networks does not capture their main properties. Since then, various attempts have been made to provide accurate models. We study here a model which achieves the following challenges: it produces graphs which have the three main wanted properties (clustering, degree distribution, average distance), it is based on some real-world observations, and it is sufficiently simple to make i...
July 5, 2006
Recently there have been a tremendous interest in models of networks with a power-law distribution of degree -- so called "scale-free networks." It has been observed that such networks, normally, have extremely short path-lengths, scaling logarithmically or slower with system size. As en exotic and unintuitive example we propose a simple stochastic model capable of generating scale-free networks with linearly scaling distances. Furthermore, by tuning a parameter the model und...
March 24, 2011
One of the most influential recent results in network analysis is that many natural networks exhibit a power-law or log-normal degree distribution. This has inspired numerous generative models that match this property. However, more recent work has shown that while these generative models do have the right degree distribution, they are not good models for real life networks due to their differences on other important metrics like conductance. We believe this is, in part, beca...
September 13, 2004
In this paper, we present a simple model of scale-free networks that incorporates both preferential & random attachment and anti-preferential & random deletion at each time step. We derive the degree distribution analytically and show that it follows a power law with the degree exponent in the range of (2,infinity). We also find a way to derive an expression of the clustering coefficient for growing networks and compute the average path length through simulation.
October 24, 2019
Random graph models are a recurring tool-of-the-trade for studying network structural properties and benchmarking community detection and other network algorithms. Moreover, they serve as test-bed generators for studying diffusion and routing processes on networks. In this paper, we illustrate how to generate large random graphs having a power-law degree distribution using the Chung--Lu model. In particular, we are concerned with the fulfilment of a fundamental hypothesis tha...
March 30, 2002
Power law distribution seems to be an important characteristic of web graphs. Several existing web graph models generate power law graphs by adding new vertices and non-uniform edge connectivities to existing graphs. Researchers have conjectured that preferential connectivity and incremental growth are both required for the power law distribution. In this paper, we propose a different web graph model with power law distribution that does not require incremental growth. We als...
January 29, 2014
We propose a method of generating different scale-free networks, which has several input parameters in order to adjust the structure, so that they can serve as a basis for computer simulation of real-world phenomena. The topological structure of these networks was studied to determine what kind of networks can be produced and how can we give the appropriate values of parameters to get a desired structure.
February 22, 2006
Scale-free networks are characterized by a degree distribution with power-law behavior and have been shown to arise in many areas, ranging from the World Wide Web to transportation or social networks. Degree distributions of observed networks, however, often differ from the power-law type and data based investigations require modifications of the typical scale-free network. We present an algorithm that generates networks in which the skewness of the degree distribution is t...
December 9, 2023
Many real systems exhibit the processes of growth and shrink. In this paper, we propose a network evolution model based on the simultaneous application of both node addition and deletion rules. To obtain a higher clustering that is present in real social networks, the model employs the triadic formation step at each iteration. The results show that the degree distribution in the networks generated based on this model follows a power law.