November 14, 2014
Research on probabilistic models of networks now spans a wide variety of fields, including physics, sociology, biology, statistics, and machine learning. These efforts have produced a diverse ecology of models and methods. Despite this diversity, many of these models share a common underlying structure: pairwise interactions (edges) are generated with probability conditional on latent vertex attributes. Differences between models generally stem from different philosophical ch...
June 4, 2014
Sampling random graphs with given properties is a key step in the analysis of networks, as random ensembles represent basic null models required to identify patterns such as communities and motifs. An important requirement is that the sampling process is unbiased and efficient. The main approaches are microcanonical, i.e. they sample graphs that match the enforced constraints exactly. Unfortunately, when applied to strongly heterogeneous networks (like most real-world example...
July 13, 2000
Recent work on the structure of social networks and the internet has focussed attention on graphs with distributions of vertex degree that are significantly different from the Poisson degree distributions that have been widely studied in the past. In this paper we develop in detail the theory of random graphs with arbitrary degree distributions. In addition to simple undirected, unipartite graphs, we examine the properties of directed and bipartite graphs. Among other results...
December 27, 2011
Stochastic blockmodels are generative network models where the vertices are separated into discrete groups, and the probability of an edge existing between two vertices is determined solely by their group membership. In this paper, we derive expressions for the entropy of stochastic blockmodel ensembles. We consider several ensemble variants, including the traditional model as well as the newly introduced degree-corrected version [Karrer et al. Phys. Rev. E 83, 016107 (2011)]...
October 27, 2001
The problem of defining a statistical ensemble of random graphs with an arbitrary connectivity distribution is discussed. Introducing such an ensemble is a step towards uderstanding the geometry of wide classes of graphs independently of any specific model. This research was triggered by the recent interest in the so-called scale-free networks.
February 3, 2023
Model complexity remains a key feature of any proposed data generating mechanism. Measures of complexity can be extended to complex patterns such as signals in time and graphs. In this paper, we are concerned with the well-studied class of exchangeable graphs. Exchangeability for graphs implies a distributional invariance under node permutation and is a suitable default model that can widely be used for network data. For this well-studied class of graphs, we make a choice to ...
November 28, 2018
The cornerstone of statistical mechanics of complex networks is the idea that the links, and not the nodes, are the effective particles of the system. Here we formulate a mapping between weighted networks and lattice gasses, making the conceptual step forward of interpreting weighted links as particles with a generalised coordinate. This leads to the definition of the grand canonical ensemble of weighted complex networks. We derive exact expressions for the partition function...
September 24, 2003
We provide a phenomenological theory for topological transitions in restructuring networks. In this statistical mechanical approach energy is assigned to the different network topologies and temperature is used as a quantity referring to the level of noise during the rewiring of the edges. The associated microscopic dynamics satisfies the detailed balance condition and is equivalent to a lattice gas model on the edge-dual graph of a fully connected network. In our studies -- ...
December 9, 2016
Barab\'asi-Albert's `Scale Free' model is the starting point for much of the accepted theory of the evolution of real world communication networks. Careful comparison of the theory with a wide range of real world networks, however, indicates that the model is in some cases, only a rough approximation to the dynamical evolution of real networks. In particular, the exponent $\gamma$ of the power law distribution of degree is predicted by the model to be exactly 3, whereas in a ...
July 9, 2009
The quantification of the complexity of networks is, today, a fundamental problem in the physics of complex systems. A possible roadmap to solve the problem is via extending key concepts of information theory to networks. In this paper we propose how to define the Shannon entropy of a network ensemble and how it relates to the Gibbs and von Neumann entropies of network ensembles. The quantities we introduce here will play a crucial role for the formulation of null models of n...