June 4, 2014
Sampling random graphs with given properties is a key step in the analysis of networks, as random ensembles represent basic null models required to identify patterns such as communities and motifs. An important requirement is that the sampling process is unbiased and efficient. The main approaches are microcanonical, i.e. they sample graphs that match the enforced constraints exactly. Unfortunately, when applied to strongly heterogeneous networks (like most real-world example...
January 7, 2013
We study a mean field model of a complex network, focusing on edge and triangle densities. Our first result is the derivation of a variational characterization of the entropy density, compatible with the infinite node limit. We then determine the optimizing graphs for small triangle density and a range of edge density, though we can only prove they are local, not global, maxima of the entropy density. With this assumption we then prove that the resulting entropy density must ...
December 27, 2011
Stochastic blockmodels are generative network models where the vertices are separated into discrete groups, and the probability of an edge existing between two vertices is determined solely by their group membership. In this paper, we derive expressions for the entropy of stochastic blockmodel ensembles. We consider several ensemble variants, including the traditional model as well as the newly introduced degree-corrected version [Karrer et al. Phys. Rev. E 83, 016107 (2011)]...
October 27, 2001
The problem of defining a statistical ensemble of random graphs with an arbitrary connectivity distribution is discussed. Introducing such an ensemble is a step towards uderstanding the geometry of wide classes of graphs independently of any specific model. This research was triggered by the recent interest in the so-called scale-free networks.
July 13, 2000
Recent work on the structure of social networks and the internet has focussed attention on graphs with distributions of vertex degree that are significantly different from the Poisson degree distributions that have been widely studied in the past. In this paper we develop in detail the theory of random graphs with arbitrary degree distributions. In addition to simple undirected, unipartite graphs, we examine the properties of directed and bipartite graphs. Among other results...
February 3, 2023
Model complexity remains a key feature of any proposed data generating mechanism. Measures of complexity can be extended to complex patterns such as signals in time and graphs. In this paper, we are concerned with the well-studied class of exchangeable graphs. Exchangeability for graphs implies a distributional invariance under node permutation and is a suitable default model that can widely be used for network data. For this well-studied class of graphs, we make a choice to ...
November 28, 2018
The cornerstone of statistical mechanics of complex networks is the idea that the links, and not the nodes, are the effective particles of the system. Here we formulate a mapping between weighted networks and lattice gasses, making the conceptual step forward of interpreting weighted links as particles with a generalised coordinate. This leads to the definition of the grand canonical ensemble of weighted complex networks. We derive exact expressions for the partition function...
December 9, 2016
Barab\'asi-Albert's `Scale Free' model is the starting point for much of the accepted theory of the evolution of real world communication networks. Careful comparison of the theory with a wide range of real world networks, however, indicates that the model is in some cases, only a rough approximation to the dynamical evolution of real networks. In particular, the exponent $\gamma$ of the power law distribution of degree is predicted by the model to be exactly 3, whereas in a ...
September 24, 2003
We provide a phenomenological theory for topological transitions in restructuring networks. In this statistical mechanical approach energy is assigned to the different network topologies and temperature is used as a quantity referring to the level of noise during the rewiring of the edges. The associated microscopic dynamics satisfies the detailed balance condition and is equivalent to a lattice gas model on the edge-dual graph of a fully connected network. In our studies -- ...
March 17, 2003
It has been argued that the observed anticorrelation between the degrees of adjacent vertices in the network representation of the Internet has its origin in the restriction that no two vertices have more than one edge connecting them. Here we introduce a formalism for modeling ensembles of graphs with single edges only and derive values for the exponents and correlation coefficients characterizing them. Our results confirm that the conjectured mechanism does indeed give rise...