August 27, 2004
Similar papers 5
June 14, 2006
In this paper we describe the emergence of scale-free degree distributions from statistical mechanics principles. We define an energy associated to a degree sequence as the logarithm of the number of indistinguishable simple networks it is possible to draw given the degree sequence. Keeping fixed the total number of nodes and links, we show that the energy of scale-free distribution is much higher than the energy associated to the degree sequence of regular random graphs. Thi...
October 11, 2018
Many research fields, reaching from social networks and epidemiology to biology and physics, have experienced great advance from recent developments in random graphs and network theory. In this paper we propose to view percolation on a directed random graph as a generic model for step-growth polymerisation. This polymerisation process is used to manufacture a broad range of polymeric materials, including: polyesters, polyurethanes, polyamides, and many others. We link feature...
October 16, 2007
A simple and accurate relationship is demonstrated that links the average shortest path, nodes, and edges in a complex network. This relationship takes advantage of the concept of link density and shows a large improvement in fitting networks of all scales over the typical random graph model. The relationships herein can allow researchers to better predict the shortest path of networks of almost any size.
March 25, 2003
Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment...
January 17, 2005
Subgraphs and cycles are often used to characterize the local properties of complex networks. Here we show that the subgraph structure of real networks is highly time dependent: as the network grows, the density of some subgraphs remains unchanged, while the density of others increase at a rate that is determined by the network's degree distribution and clustering properties. This inhomogeneous evolution process, supported by direct measurements on several real networks, lead...
June 17, 2013
We present a novel way to characterize the structure of complex networks by studying the statistical properties of the trajectories of random walks over them. We consider time series corresponding to different properties of the nodes visited by the walkers. We show that the analysis of the fluctuations of these time series allows to define a set of characteristic exponents which capture the local and global organization of a network. This approach provides a way of solving tw...
August 1, 2005
We investigate a simple generative model for network formation. The model is designed to describe the growth of networks of kinship, trading, corporate alliances, or autocatalytic chemical reactions, where feedback is an essential element of network growth. The underlying graphs in these situations grow via a competition between cycle formation and node addition. After choosing a given node, a search is made for another node at a suitable distance. If such a node is found, a ...
September 9, 2024
The degree distribution is a key statistical indicator in network theory, often used to understand how information spreads across connected nodes. In this paper, we focus on non-growing networks formed through a rewiring algorithm and develop kinetic Boltzmann-type models to capture the emergence of degree distributions that characterize both preferential attachment networks and random networks. Under a suitable mean-field scaling, these models reduce to a Fokker-Planck-type ...
April 5, 1999
Small-world architectures may be implicated in a range of phenomena from disease propagation to networks of neurons in the cerebral cortex. While most of the recent attention on small-world networks has focussed on the effect of introducing disorder/randomness into a regular network, we show that that the fundamental mechanism behind the small-world phenomenon is not disorder/randomness, but the presence of connections of many different length scales. Consequently, in order t...
February 13, 2007
In this work we introduce Dynamic Random Geometric Graphs as a basic rough model for mobile wireless sensor networks, where communication distances are set to the known threshold for connectivity of static random geometric graphs. We provide precise asymptotic results for the expected length of the connectivity and disconnectivity periods of the network. We believe the formal tools developed in this work could be of use in future studies in more concrete settings. In addition...