October 14, 2004
Similar papers 3
February 26, 2022
In this paper, the performance of more than 40 popular or recently developed density functionals is assessed for the calculation of 463 vertical excitation energies against the large and accurate QuestDB benchmark set. For this purpose, the Tamm-Dancoff approximation offers a good balance between performance and accuracy. The functionals $\omega$B97X-D and BMK are found to offer the best performance overall with a Root-Mean Square Error (RMSE) of 0.28 eV, better than the comp...
October 11, 2024
We present the theory, implementation, and benchmarking of a real-time time-dependent density functional theory (RT-TDDFT) module within the RMG code, designed to simulate the electronic response of molecular systems to external perturbations. Our method offers insights into non-equilibrium dynamics and excited states across a diverse range of systems, from small organic molecules to large metallic nanoparticles. Benchmarking results demonstrate excellent agreement with estab...
January 11, 2011
It is shown that the density-potential mapping and the ${\cal V}$-representability problems in the time-dependent current density functional theory (TDCDFT) are reduced to the solution of a certain many-body nonlinear Schr\"odinger equation (NLSE). The derived NLSE for TDCDFT adds a link which bridges the earlier NLSE-based formulations of the time-dependent deformation functional theory (TDDefFT) and the time-dependent density functional theory (TDDFT). We establish close re...
May 22, 2021
First-order nonadiabatic coupling matrix elements (fo-NACMEs) are the basic quantities in theoretical descriptions of electronically nonadiabatic processes that are ubiquitous in molecular physics and chemistry. Given the large size of systems of chemical interests, time-dependent density functional theory (TDDFT) is usually the first choice. However, the lack of wave functions in TDDFT renders the formulation of NAC-TDDFT for fo-NACMEs conceptually difficult. The present acc...
August 20, 2020
Real-Time Time-Dependent Density Functional Theory (TDDFT) has become an attractive tool to model quantum dynamics on a first-principles Density Functional Theory level. In recent years, several developments and applications in this field were achieved and hopefully lead to new insights. We present here our versatile and efficient Real-Time TDDFT implementation into the all-electron numerical basis-set DFT code package FHI-aims. This article is meant as a short overview on ho...
April 24, 2022
Classical dynamical density functional theory (DDFT) has become one of the central modeling approaches in nonequilibrium soft matter physics. Recent years have seen the emergence of novel and interesting fields of application for DDFT. In particular, there has been a remarkable growth in the amount of work related to chemistry. Moreover, DDFT has stimulated research on other theories such as phase field crystal models and power functional theory. In this perspective, we summa...
July 15, 2020
The time-dependent density functional theory (TDDFT) has been broadly used to investigate the excited-state properties of various molecular systems. However, the current TDDFT heavily relies on outcomes from the corresponding ground-state density functional theory (DFT) calculations which may be prone to errors due to the lack of proper treatment in the non-dynamical correlation effects. Recently, thermally-assisted-occupation density functional theory (TAO-DFT) [J.-D. Chai, ...
March 3, 2016
When running time-dependent density functional theory (TDDFT) calculations for real-time simulations of non-equilibrium dynamics, the user has a choice of initial Kohn-Sham state, and typically a Slater determinant is used. We explore the impact of this choice on the exchange-correlation potential when the physical system begins in a 50:50 superposition of the ground and first-excited state of the system. We investigate the possibility of judiciously choosing a Kohn-Sham init...
February 20, 2009
The logical structure and the basic theorems of time-dependent current density functional theory (TDCDFT) are analyzed and reconsidered from the point of view of recently proposed time-dependent deformation functional theory (TDDefFT). It is shown that the formalism of TDDefFT allows to avoid a traditional external potential-to-density/current mapping. Instead the theory is formulated in a form similar to the constrained search procedure in the ground state DFT. Within this f...
May 4, 2014
We demonstrate that ground state energies approaching chemical accuracy can be obtained by combining the adiabatic connection fluctuation-dissipation theorem (ACFDT) with time-dependent density functional theory (TDDFT). The key ingredient is a renormalization scheme, which eliminates the divergence of the correlation hole characteristic of any local kernel. This new class of renormalized kernels gives a significantly better description of the short-range correlations in cova...