October 29, 2004
Similar papers 2
July 23, 2024
Flagellated microorganisms overcome the low-Reynolds-number time reversibility by rotating helical flagella. For peritrichous bacteria, such as Escherichia coli, the randomly distributed flagellar filaments align along the same direction to form a bundle, facilitating complex locomotive strategies. To understand the process of flagella bundling, especially the propulsion force, we develop a multi-functional macroscopic experimental system and employ advanced numerical simulat...
March 9, 2014
Microscale fluid flows generated by ensembles of beating eukaryotic flagella are crucial to fundamental processes such as development, motility and sensing. Despite significant experimental and theoretical progress, the underlying physical mechanisms behind this striking coordination remain unclear. Here, we present a novel series of experiments in which the flagellar dynamics of two micropipette-held somatic cells of Volvox carteri, with measurably different intrinsic beatin...
January 28, 2014
Hydrodynamic synchronization provides a general mechanism for the spontaneous emergence of coherent beating states in independently driven mesoscopic oscillators. A complete physical picture of those phenomena is of definite importance to the understanding of biological cooperative motions of cilia and flagella. Moreover, it can potentially suggest novel routes to exploit synchronization in technological applications of soft matter. We demonstrate that driving colloidal parti...
December 8, 2014
Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical fla...
April 23, 2019
Using a geometric feedback model of the flagellar axoneme accounting for dynein motor kinetics, we study elastohydrodynamic phase synchronization in a pair of spontaneously beating filaments with waveforms ranging from sperm to cilia and Chlamydomonas. Our computations reveal that both in-phase and anti-phase synchrony can emerge for asymmetric beats while symmetric waveforms go in-phase, and elucidate the mechanism for phase slips due to biochemical noise. Model predictions ...
November 4, 2010
Synchronization of actively oscillating organelles such as cilia and flagella facilitates self-propulsion of cells and pumping fluid in low Reynolds number environments. To understand the key mechanism behind synchronization induced by hydrodynamic interaction, we study a model of rigid-body rotors making fixed trajectories of arbitrary shape under driving forces that are arbitrary functions of the phases. For a wide class of geometries, we obtain the necessary and sufficient...
June 24, 2022
We study synchronization in bulk suspensions of spherical microswimmers with chiral trajectories using large scale numerics. The model is generic. It corresponds to the lowest order solution of a general model for self-propulsion at low Reynolds numbers, consisting of a nonaxisymmetric rotating source dipole. We show that both purely circular and helical swimmers can spontaneously synchronize their rotation. The synchronized state corresponds to velocity alignment with high o...
August 23, 2024
We present a mathematical model of lophotrichous bacteria, motivated by Pseudomonas putida, which swim through fluid by rotating a cluster of multiple flagella extended from near one pole of the cell body. Although the flagella rotate individually, they are typically bundled together, enabling the bacterium to exhibit three primary modes of motility: push, pull, and wrapping. One key determinant of these modes is the coordination between motor torque and rotational direction ...
July 7, 2021
Hydrodynamic interactions (HIs) are important in biophysics research because they influence both the collective and the individual behaviour of microorganisms and self-propelled particles. For instance, HIs at the micro-swimmer level determine the attraction or repulsion between individuals, and hence their collective behaviour. Meanwhile, HIs between swimming appendages (e.g. cilia and flagella) influence the emergence of swimming gaits, synchronised bundles and metachronal ...
September 7, 2015
Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micr...