September 4, 2002
We use a simultaneous flow of ethylene and hydrogen gases to grow single wall carbon nanotubes by chemical vapor deposition. Strong coupling to the gate is inferred from transport measurements for both metallic and semiconducting tubes. At low-temperatures, our samples act as single-electron transistors where the transport mechanism is mainly governed by Coulomb blockade. The measurements reveal very rich quantized energy level spectra spanning from valence to conduction band...
June 8, 2003
We performed a comprehensive scaling study of Schottky barrier carbon nanotube transistors using self-consistent, atomistic scale simulations. We restrict our attention to Schottky barrier carbon nanotube FETs whose metal source/drain is attached to an intrinsic carbon nanotube channel. Ambipolar conduction is found to be an important factor that must be carefully considered in device design, especially when the gate oxide is thin. The channel length scaling limit imposed by ...
May 1, 2012
We use numerical simulations to analyze recent experimental measurements of short-channel carbon nanotube field-effect transistors with palladium contacts. We show that the gate strongly modulates the contact properties, an effect that is distinct from that observed in Schottky barrier carbon nanotube transistors. This modulation of the contacts by the gate allows for the realization of superior subthreshold swings for short channels, and improved scaling behavior. These resu...
September 21, 2009
A simple scalable scheme is reported for fabricating suspended carbon nanotube field effect transistors (CNT-FETs) without exposing pristine as-grown carbon nanotubes to subsequent chemical processing. Versatility and ease of the technique is demonstrated by controlling the density of suspended nanotubes and reproducing devices multiple times on the same electrode set. Suspending the carbon nanotubes results in ambipolar transport behavior with negligible hysteresis. The Hoog...
March 18, 2005
We demonstrate wafer-scale integration of single electron memories based on carbon nanotube field effect transistors (cnfets) by a complete self assembly process. First, a dry self assembly based on a Hot Filament assisted Chemical Vapor Deposition technique allows both localized growth and in situ electrical connection of carbon nanotubes on predefined catalytic electrodes. The semiconducting carbon nanotubes integration yield can exceed 50% for a batch. Secondly, a wet self...
January 13, 2004
High performance p- and n-type single-walled carbon nanotube (SWNT) field-effect transistors (FETs) are obtained by using high and low work function metals, Pd and Al as source/drain (S/D) electrodes respectively. Ohmic contacts made to chemically intrinsic SWNTs, with no or small Schottky barriers (SB), afford high ON-state currents up to 20 uA per tube. The lack of significant Fermi-level pinning at the nanotube-metal interfaces allows for fine-tuning of the barrier heights...
April 20, 2019
Low-dimensional materials such as layered semiconductors or carbon nanotubes (CNTs) have been attracting increasing attention in the last decades due to their inherent scaling properties, which become fundamental to sustain the scaling in electronic devices. Inspired by recent experimental results (S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang, G.H. Ahn, G. Pitner, M.J. Kim, J. Bokor, C. Hu, H.-S. P. Wong, and A. Javey, Science 354, 99 (2016)), in this work ...
April 19, 2010
Controlled growth, patterning and placement of carbon nanotube (CNT) thin films for electronic applications are demonstrated. The density of CNT films is controlled by optimizing the feed gas composition as well as the concentration of growth catalyst in a chemical vapor deposition process. Densities of CNTs ranging from 0.02 CNTs/{\mu}m^2 to 1.29 CNTs/{\mu}m^2 are obtained. The resulting pristine CNT thin films are then successfully patterned using either pre-growth or post-...
November 2, 2005
This letter reports a charge transfer p-doping scheme which utilizes one-electron oxidizing molecules to obtain stable, unipolar carbon nanotube transistors with a self-aligned gate structure. This doping scheme allows one to improve carrier injection, tune the threshold voltage Vth, and enhance the device performance in both the ON- and OFF- transistor states. Specifically, the nanotube transistor is converted from ambipolar to unipolar, the device drive current is increased...
June 21, 2004
Carbon nanotube field-effect transistors with structures and properties near the scaling limit with short (down to 50 nm) channels, self aligned geometries, palladium electrodes with low contact resistance and high-k dielectric gate insulators are realized. Electrical transport in these miniature transistors is near ballistic up to high biases at both room and low temperatures. Atomic layer deposited (ALD) high-k films interact with nanotube sidewalls via van der Waals intera...