November 11, 2004
Similar papers 4
May 18, 2011
We study the two-dimensional Edwards-Anderson spin-glass model using a parallel tempering Monte Carlo algorithm. The ground-state energy and entropy are calculated for different bond distributions. In particular, the entropy is obtained by using a thermodynamic integration technique and an appropriate reference state, which is determined with the method of high-temperature expansion. This strategy provide accurate values of this quantity for finite-size lattices. By extrapola...
February 7, 2024
We adapted the SWAP molecular dynamics algorithm for use in lattice Ising spin models. We dressed the spins with a randomly distributed length and we alternated long-range spin exchanges with conventional single spin flip Monte Carlo updates, both accepted with a stochastic rule which respects detailed balance. We show that this algorithm, when applied to the bidimensional Edwards-Anderson model, speeds up significantly the relaxation at low temperatures and manages to find g...
December 27, 2013
The study of the low temperature phase of spin glass models by means of Monte Carlo simulations is a challenging task, because of the very slow dynamics and the severe finite size effects they show. By exploiting at the best the capabilities of standard modern CPUs (especially the SSE instructions), we have been able to simulate the four-dimensional (4D) Edwards-Anderson model with Gaussian couplings up to sizes $L=70$ and for times long enough to accurately measure the asymp...
March 11, 2014
We perform equilibrium parallel-tempering simulations of the 3D Ising Edwards-Anderson spin glass in a field. A traditional analysis shows no signs of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour of the model: Averages over all the data only describe the behaviour of a small fraction of it. Therefore we develop a new approach to study the equilibrium behaviour of the system, by classifying the measurements as a function of a conditioning variat...
March 5, 2008
We study the coarsening dynamics of the three-dimensional random field Ising model using Monte Carlo numerical simulations. We test the dynamic scaling and super-scaling properties of global and local two-time observables. We treat in parallel the three-dimensional Edward-Anderson spin-glass and we recall results on Lennard-Jones mixtures and colloidal suspensions to highlight the common and different out of equilibrium properties of these glassy systems.
November 9, 1995
We present a coherent approach to the competition between thermodynamic states in spatially inhomogeneous systems, such as the Edwards-Anderson spin glass with a fixed coupling realization. This approach explains and relates chaotic size dependence, ``dispersal of the metastate'', and for replicas: non-independence, symmetry breaking, and overlap (non-)self-averaging.
May 15, 2011
This article is a contribution to the understanding of fluctuations in the out of equilibrium dynamics of glassy systems. By extending theoretical ideas based on the assumption that time-reparametrization invariance develops asymptotically we deduce the scaling properties of diverse high-order correlation functions. We examine these predictions with numerical tests in a standard glassy model, the 3d Edwards-Anderson spin-glass, and in a system where time-reparametrization inv...
November 18, 2008
Using the dedicated computer Janus, we follow the nonequilibrium dynamics of the Ising spin glass in three dimensions for eleven orders of magnitude. The use of integral estimators for the coherence and correlation lengths allows us to study dynamic heterogeneities and the presence of a replicon mode and to obtain safe bounds on the Edwards-Anderson order parameter below the critical temperature. We obtain good agreement with experimental determinations of the temperature-dep...
September 4, 1997
We propose a new Monte Carlo technique in which the degeneracy of energy states is obtained with a Markovian process analogous to that of Metropolis used currently in canonical simulations. The obtained histograms are much broader than those of the canonical histogram technique studied by Ferrenberg and Swendsen. Thus we can reliably reconstruct thermodynamic functions over a much larger temperature scale also away from the critical point. We show for the two-dimensional Isin...
July 21, 1992
We report a Monte Carlo simulation of the $2D$ Edwards-Anderson spin glass model within the recently introduced multicanonical ensemble. Replica on lattices of size $L^2$ up to $L=48$ are investigated. Once a true groundstate is found, we are able to give a lower bound on the number of statistically independent groundstates sampled. Temperature dependence of the energy, entropy and other quantities of interest are easily calculable. In particular we report the groundstate res...