November 26, 1998
We show that the numerical method based on the off-equilibrium fluctuation-dissipation relation does work and is very useful and powerful in the study of disordered systems which show a very slow dynamics. We have verified that it gives the right information in the known cases (diluted ferromagnets and random field Ising model far from the critical point) and we used it to obtain more convincing results on the frozen phase of finite-dimensional spin glasses. Moreover we used ...
February 24, 2015
We address dissipation effects on the non-equilibrium quantum dynamics of an ensemble of spins-1/2 coupled via an Ising interaction. Dissipation is modeled by a (ohmic) bath of harmonic oscillators at zero temperature and correspond either to the sound modes of a one-dimensional Bose-Einstein (quasi-)condensate or to the zero-point fluctuations of a long transmission line. We consider the dimer comprising two spins and the quantum Ising chain with long-range interactions, and...
July 27, 2022
We show that tailoring the dissipative environment allows to change the features of continuous quantum phase transitions and, even, induce first order transitions in ferromagnetic spin chains. In particular, using a numerically exact quantum Monte Carlo method for the paradigmatic Ising chain of one-half spins in a transverse magnetic field, we find that spin couplings to local quantum boson baths in the Ohmic regime can drive the transition from the second to the first order...
February 9, 2004
We consider a one-dimensional Ising model in a transverse magnetic field coupled to a dissipative heat bath. The phase diagram and the critical exponents are determined from extensive Monte Carlo simulations. It is shown that the character of the quantum phase transition is radically altered from the corresponding non-dissipative model and the double-well coupled to a dissipative heat bath with linear friction. Spatial couplings and the dissipative dynamics combine to form a ...
October 18, 2018
The competition between interactions and dissipative processes in a quantum many-body system can drive phase transitions of different order. Exploiting a combination of cluster methods and quantum trajectories, we show how the systematic inclusion of (classical and quantum) nonlocal correlations at increasing distances is crucial to determine the structure of the phase diagram, as well as the nature of the transitions in strongly interacting spin systems. In practice, we focu...
June 25, 2024
Quantum states in complex aggregates are unavoidably affected by environmental effects, which typically cannot be accurately modeled by simple Markovian processes. As system sizes scale up, nonperturbative simulation become thus unavoidable but they are extremely challenging due to the intimate interplay of intrinsic many-body interaction and time-retarded feedback from environmental degrees of freedom. In this work, we utilize the recently developed Quantum Dissipation with ...
July 9, 1998
We develop a systematic analytic approach to aging effects in quantum disordered systems in contact with an environment. Within the closed-time path-integral formalism we include dissipation by coupling the system to a set of independent harmonic oscillators that mimic a quantum thermal bath. After integrating over the bath variables and averaging over disorder we obtain an effective action that determines the real-time dynamics of the system. The classical limit yields the M...
April 3, 2017
Quantum dissipation arises when a large system can be split in a quantum system and an environment where the energy of the former flows to. Understanding the effect of dissipation on quantum many-body systems is of particular importance due to its potential relations with quantum information processing. We propose a conceptually simple approach to introduce the dissipation into interacting quantum systems in a thermodynamical context, in which every site of a 1d lattice is co...
November 23, 2008
We investigate the quantum phase transition in the random transverse-field Ising model under the influence of Ohmic dissipation. To this end, we numerically implement a strong-disorder renormalization-group scheme. We find that Ohmic dissipation destroys the quantum critical point and the associated quantum Griffiths phase by smearing. Our results quantitatively confirm a recent theory [Phys. Rev. Lett. {\bf 100}, 240601 (2008)] of smeared quantum phase transitions.
May 30, 2024
Open driven quantum systems have defined a powerful paradigm of non-equilibrium phases and phase transitions; however, quantum phase transitions are generically not expected in this setting due to the decohering effect of dissipation. In this work, we show that a driven-dissipative quantum spin chain exhibits a peculiar sensitivity to the ground-state quantum phase transition. Specifically, we consider a quantum Ising model subject to bulk dissipation (at rate $\Gamma$) and s...