December 13, 2004
Similar papers 2
June 22, 2012
Vibrating walls, used to maintain the temperature in a granular gas, modify the system strongly. Most conspicuously, the usual one-peak velocity distribution splits into two, asymmetrically positioned. A surgical repair of the usual hydrodynamic description is presented that provides an account for, and an understanding of, the situation.
November 19, 2003
We report numerical simulations of strongly vibrated granular materials designed to mimic recent experiments performed both in presence [1] or absence [2] of gravity. We show that a model with impact velocity dependent restitution coefficient is necessary to bring the simulations into agreement with experiments. We measure the scaling exponents of the granular temperature, collision frequency, impulse and pressure with the vibrating piston velocity. As the system changes from...
September 6, 1996
We study the power input of a vibrating wall into a fluidized granular medium, using event driven simulations of a model granular system. The system consists of inelastic hard disks contained between a stationary and a vibrating elastic wall, in the absence of gravity. Two scaling relations for the power input are found, both involving the pressure. The transition between the two occurs when waves generated at the moving wall can propagate across the system. Choosing an appro...
May 20, 1998
We study vibrated granular media, investigating each of the three components of the energy flow: particle-particle dissipation, energy input at the vibrating wall, and particle-wall dissipation. Energy dissipated by interparticle collisions is well estimated by existing theories when the granular material is dilute, and these theories are extended to include rotational kinetic energy. When the granular material is dense, the observed particle-particle dissipation rate decreas...
March 7, 2007
We report two-dimensional simulations of strongly vibrated granular materials without gravity. The coefficient of restitution depends on the impact velocity between particles by taking into account both the viscoelastic and plastic deformations of particles, occurring at low and high velocities respectively. Use of this model of restitution coefficient leads to new unexpected behaviors. When the number of particles N is large, a loose cluster appears near the fixed wall, oppo...
February 13, 2009
We study heat conduction in one-dimensional granular gases. In particular, we consider two mechanisms of viscous dissipation during inter-grain collisions. In one, the dissipative force is proportional to the grain's velocity and dissipates not only energy but also momentum. In the other, the dissipative force is proportional to the relative velocity of the grains and therefore conserves momentum even while dissipating energy. This allows us to explore the role of momentum co...
April 11, 2012
A numerical study is presented to analyze the thermal mechanisms of unsteady, supersonic granular flow, by means of hydrodynamic simulations of the Navier-Stokes granular equations. For this purpose a paradigmatic problem in granular dynamics such as the Faraday instability is selected. Two different approaches for the Navier-Stokes transport coefficients for granular materials are considered, namely the traditional Jenkins-Richman theory for moderately dense quasi-elastic gr...
October 21, 2002
We study, via hydrodynamic equations, the granular temperature profile of a granular fluid under gravity and subjected to energy injection from a base. It is found that there exists a turn-up in the granular temperature and that, far from the base, it increases linearly with height. We show that this phenomenon, observed previously in experiments and computer simulations, is a direct consequence of the heat flux law, different form Fourier's, in granular fluids. The positiv...
June 2, 2008
A driven granular material, e.g. a vibrated box full of sand, is a stationary system which may be very far from equilibrium. The standard equilibrium statistical mechanics is therefore inadequate to describe fluctuations in such a system. Here we present numerical and analytical results concerning energy and injected power fluctuations. In the first part we explain how the study of the probability density function (pdf) of the fluctuations of total energy is related to the ch...
June 30, 2017
Buoyancy-driven (thermal) convection in dilute granular media, fluidized by a vibrating base, is known to appear without the need of lateral boundaries in a restricted region of parameters (inelasticity, gravity, intensity of energy injection). We have recently discovered a second buoyancy-driven convection effect which occurs at any value of the parameters, provided that the impact of particles with the lateral walls is inelastic (Pontuale et al., Phys. Rev. Lett. 117, 09800...