January 5, 2005
Similar papers 4
May 28, 2009
The miscibility in several polymer blend mixtures (polymethylmethacrylate/polystyrene, (1,4-cis) polyisoprene/polystyrene, and polymethylmethacrylate/polyoxyethylene) has been investigated using Molecular Dynamics simulations for atomistic representations of the polymer chains. The trajectories obtained from simulation boxes representing the mixtures have been analyzed in terms of the collective scattering structure function. The Flory-Huggins parameter is determined from fit...
September 21, 2017
Dynamic density functionals (DDFs) are popular tools for studying the dynamical evolution of inhomogeneous polymer systems. Here, we present a systematic evaluation of a set of diffusive DDF theories by comparing their predictions with data from particle-based Brownian dynamics (BD) simulations for two selected problems: Interface broadening in compressible A/B homopolymer blends after a sudden change of the incompatibility parameter, and microphase separation in compressible...
October 29, 2007
Attempts to use coarse-grained molecular theories to calculate corrections to the random-phase approximation (RPA) for correlations in polymer mixtures have been plagued by an unwanted sensitivity to the value of an arbitrary cutoff length, {\it i.e.}, by an ultraviolet (UV) divergence. We analyze the UV divergence of the inverse structure factor $S^{-1}(k)$ predicted by a `one-loop' approximation similar to that used in several previous studies. We consider both miscible hom...
March 27, 2008
Using the complex Langevin sampling strategy, field theoretic simulations are performed to study the equilibrium phase behavior and structure of symmetric polycation-polyanion mixtures without salt in good solvents. Static structure factors for the segment density and charge density are calculated and used to study the role of fluctuations in the electrostatic and chemical potential fields beyond the random phase approximation. We specifically focus on the role of charge dens...
June 30, 2011
These lecture notes are a guided tour through the fascinating world of polymer chains interacting with themselves and/or with their environment. The focus is on the mathematical description of a number of physical and chemical phenomena, with particular emphasis on phase transitions and space-time scaling. The topics covered, though only a selection, are typical for the area. Sections 1-3 describe models of polymers without disorder, Sections 4-6 models of polymers with disor...
November 2, 2004
The physical properties of blends of distinct homopolymers, cross-linked beyond the gelation point, are addressed via a Landau approach involving a pair of coupled order-parameter fields: one describing vulcanisation, the other describing local phase separation. Thermal concentration fluctuations, present at the time of cross-linking, are frozen in by cross-linking, and the structure of the resulting glassy fluctuations is analysed at the Gaussian level in various regimes, de...
November 18, 2004
We present a theoretical approach which maps polymer blends onto mixtures of soft-colloidal particles. The analytical mesoscale pair distribution functions reproduce well data from united atom molecular dynamics simulations of polyolefin mixtures without fitting parameters. The theory exactly recovers the analytical expressions for density and concentration fluctuation structure factors of soft colloidal mixtures (liquid alloys).
September 11, 1997
We investigate interfacial properties between two highly incompatible polymers of different stiffness. The extensive Monte Carlo simulations of the binary polymer melt yield detailed interfacial profiles and the interfacial tension via an analysis of capillary fluctuations. We extract an effective Flory-Huggins parameter from the simulations, which is used in self-consistent field calculations. These take due account of the chain architecture via a partial enumeration of the ...
November 6, 2002
We present an exact field theoretical representation of the statistical mechanics of simple classical liquids with short-ranged pairwise additive interactions. The action of the field theory is obtained by performing a Hubbard-Stratonovich transformation of the configurational Boltzmann factor. The mean field and Gaussian approximations of the theory are derived and applications to the liquid-vapour transition considered.
November 7, 2012
Monte Carlo simulation provides a powerful tool for understanding and exploring thermodynamic phase equilibria in many-particle interacting systems. Among the most physically intuitive simulation methods is Gibbs ensemble Monte Carlo (GEMC), which allows direct computation of phase coexistence curves of model fluids by assigning each phase to its own simulation cell. When one or both of the phases can be modeled virtually via an analytic free energy function [M. Mehta and D. ...