February 15, 2005
The Kondo resonance is the spectral manifestation of the Kondo properties of the impurity Anderson model, and also plays a central role in the dynamical mean-field theory (DMFT) for correlated electron lattice systems. This article presents an overview of electron spectroscopy studies of the resonance for the 4f electrons of cerium compounds, and for the 3d electrons of V_2O_3, including beginning efforts at using angle resolved photoemission to determine the k-dependence of the resonance. The overview includes the comparison and analysis of spectroscopy data with theoretical spectra as calculated for the impurity model and as obtained by DMFT, and the Kondo volume collapse calculation of the cerium alpha-gamma phase transition boundary, with its spectroscopic underpinnings.
Similar papers 1
February 15, 2007
We present a high-resolution photoemission study on the strongly correlated Ce-compounds CeCu_6, CeCu_2Si_2, CeRu_2Si_2, CeNi_2Ge_2, and CeSi_2. Using a normalization procedure based on a division by the Fermi-Dirac distribution we get access to the spectral density of states up to an energy of 5 k_BT above the Fermi energy E_F. Thus we can resolve the Kondo resonance and the crystal field (CF) fine-structure for different temperatures above and around the Kondo temperature T...
February 6, 2013
Kondo effect is an example of asymptotic freedom where the antiferromagnetic coupling between a localized magnetic moment and valence electrons, increases with reducing temperature. The electronic spectral function for such a system predicts a narrow Kondo resonance close to Fermi energy below its Kondo temperature 'TK'. The internal energy level structure of the localized magnetic moment introduces sidebands near the Kondo resonance, each with its respective Kondo temperatur...
April 2, 2001
We present high-resolution photoemission spectroscopy studies on the Kondo resonance of the strongly-correlated Ce system CeCu$_2$Si$_2$. Exploiting the thermal broadening of the Fermi edge we analyze position, spectral weight, and temperature dependence of the low-energy 4f spectral features, whose major weight lies above the Fermi level $E_F$. We also present theoretical predictions based on the single-impurity Anderson model using an extended non-crossing approximation (NC...
June 14, 2018
The interaction between a magnetic impurity, such as cerium (Ce) atom, and surrounding electrons has been one of the core problems in understanding many-body interaction in solid and its relation to magnetism. Kondo effect, the formation of a new resonant ground state with quenched magnetic moment, provides a general framework to describe many-body interaction in the presence of magnetic impurity. In this Letter, a combined study of angle-resolved photoemission (ARPES) and dy...
July 18, 2018
Cerium, in which the 4$f$ valence electrons live at the brink between localized and itinerant characters, exhibits varying crystal structures and therefore anomalous physical properties with respect to temperature and pressure. Understanding its electronic structure and related lattice properties is one of the central topics in condensed matter theory. In the present work, we employed the state-of-the-art first-principles many-body approach (i.e., the density functional theor...
June 28, 2001
The merger of density-functional theory in the local density approximation (LDA) and many-body dynamical mean field theory (DMFT) allows for an ab initio calculation of Ce including the inherent 4f electronic correlations. We solve the DMFT equations by the quantum Monte Carlo (QMC) technique and calculate the Ce energy, spectrum, and double occupancy as a function of volume. At low temperatures, the correlation energy exhibits an anomalous region of negative curvature which ...
August 12, 2004
Dynamical mean-field theory (DMFT) is a non-perturbative technique for the investigation of correlated electron systems. Its combination with the local density approximation (LDA) has recently led to a material-specific computational scheme for the ab initio investigation of correlated electron materials. The set-up of this approach and its application to materials such as (Sr,Ca)VO_3, V_2O_3, and Cerium is discussed. The calculated spectra are compared with the spectroscopic...
January 18, 2001
We have calculated ground state properties and excitation spectra for Ce metal with the {\it ab initio} computational scheme combining local density approximation and dynamical mean-field theory (LDA+DMFT). We considered all electronic states, i.e. correlated f-states and non-correlated s-, p- and d-states. The strong local correlations (Coulomb interaction) among the f-states lead to typical many-body resonances in the partial f-density, such as lower and upper Hubbard band....
July 17, 2009
We study the role of electron correlations among Co 3d electrons contributing to the conduction band of a Kondo lattice compound, Ce2CoSi3, using high resolution photoemission spectroscopy and ab initio band structure calculations. Experimental results reveal signature of Ce 4$f$ states derived Kondo resonance feature at the Fermi level and dominance of Co 3d contributions at higher binding energies in the valence band. The line shape of the experimental Co 3$d$ band is found...
October 23, 1999
Resonant photoemission (RPES) at the Ce 3d -> 4f threshold has been performed for alpha-like compound CeNi_2 with extremely high energy resolution (full width at half maximum < 0.2 eV) to obtain bulk-sensitive 4f spectral weight. The on-resonance spectrum shows a sharp resolution-limited peak near the Fermi energy which can be assigned to the tail of the Kondo resonance. However, the spin-orbit side band around 0.3 eV binding energy corresponding to the f_{7/2} peak is washed...