February 16, 2005
Similar papers 4
December 22, 2015
We have recently implemented a new version of the quasiparticle self-consistent GW (QSGW) method in the ecalj package released at http://github.com/tkotani/ecalj. Since the new version of the ecalj is numerically stable and accurate compared to the previous versions, we can perform calculations easily without being bothered with setting input parameters. Here we examine its ability to describe energy band properties, e.g., band-gap energy, eigenvalues at special points and ef...
November 25, 2013
Point defects in Ga- and Al-doped ZnO thin films are studied by means of first principles electronic structure calculations. Candidate defects are identified to explain recently observed differences in electrical and spectroscopical behavior of both systems. Substitutional doping in Ga-ZnO explain the metallic behavior of the electrical properties. Complexes of interstitial oxygen with substitutional Ga can behave as acceptor and cause partial compensation, as well as gap sta...
June 6, 2019
Group IB metal halides (CuX and AgX, X=Cl, Br and I) are widely used in optoelectronic devices and photochemical catalysis due to their appropriate optical and electronic properties. First-principles calculations have confronted difficulties in accurately predicting their electronic band structures. Here we study CuX and AgX with many-body perturbation theory in the $GW$ approximation, implemented in the full-potential linearized augmented plane waves (FP-LAPW) framework. Com...
November 29, 2024
The GW approximation within many-body perturbation theory is the state of the art for computing quasiparticle energies in solids. Typically, Kohn-Sham (KS) eigenvalues and eigenfunctions, obtained from a Density Functional Theory (DFT) calculation are used as a starting point to build the Green's function G and the screened Coulomb interaction W, yielding the one-shot G0W0 selfenergy if no further update of these quantities are made. Multiple implementations exist for both th...
June 10, 2021
We present an approach to calculate the electronic structure for a range of materials using the quasiparticle self-consistent GW method with vertex corrections included in the screened Coulomb interaction W. This is achieved by solving the Bethe-Salpeter equation for the polarization matrix at all k-points in the Brillouin zone. We refer to this method as QSGW^. We show that including ladder diagrams in W can greatly reduce the band gap overestimation of RPA-based QSGW. The r...
September 24, 2006
We report the first quasiparticle calculations of the newly observed wurtzite polymorph of InAs and GaAs. The calculations are performed in the GW approximation using plane waves and pseudopotentials. For comparison we also report the study of the zinc-blende phase within the same approximations. In the InAs compound the In 4d electrons play a very important role: whether they are frozen in the core or not, leads either to a correct or a wrong band ordering (negative gap) wit...
February 20, 2014
Using quasiparticle self-consistent $GW$ calculations we examined the electronic structure of LaNiO$_3$ and the LaNiO$_3$/LaAlO$_3$ superlattice. The effects of electron correlation in Ni-$d$ bands were reasonably well described without any {\it ad hoc} parameter and without the ambiguity related to the double-counting and downfolding issues. The effective mass is about $30\%$ enhanced compared to the GGA result. One band feature, which is believed to be essential for the cup...
September 28, 2017
The role of intrinsic defects has been investigated to determine binding energies and the electronic structure of Gd complexes in ZnO. We use density-functional theory and the GW method to show that the presence of vacancies and interstitials affect the electronic structure of Gd doped ZnO. However, the strong localization of the Gd-$f$ and $d$ states suggest that carrier mediated ferromagnetism in this material may be difficult to achieve.
August 11, 2005
We use an all-electron implementation of the GW approximation to analyze several possible sources of error in the theory and its implementation. Among these are convergence in the polarization and Green's functions, the dependence of QP levels on choice of basis sets, and differing approximations for dealing with core levels. In all GW calculations presented here, G and W are generated from the local-density approximation (LDA), which we denote as the \GLDA\WLDA approximation...
December 29, 2020
Photoelectron spectra of early $3d-$transition metal dioxide anions, ScO$_{2}^-$, TiO$_{2}^-$, VO$_{2}^-$, CrO$_{2}^-$, MnO$_{2}^-$, are calculated using semilocal and hybrid density functional theory (DFT) and many-body perturbation theory within the $GW$ approximation using one-shot perturbative and eigenvalue self-consistent formalisms. Different levels of theory are compared with each other and with available photoelectron spectra. We show that one-shot $GW$ with a PBE0 s...