February 22, 2005
Similar papers 4
May 11, 2002
A ratchet model for coupled Brownian motors, inspired by the motion of individual two-headed molecular motors on cytoskeletal filaments, is proposed. Such motors are modeled as two elastically coupled Brownian particles, each of which moves in a flashing ratchet potential. The ratchet potentials felt by the individual particles are anti-correlated, modeling the successive binding and unbinding of the two motor heads to the filament. We obtain, via Langevin simulations, steady...
September 3, 2005
Traffic-like collective movements are observed at almost all levels of biological systems. Molecular motor proteins like, for example, kinesin and dynein, which are the vehicles of almost all intra-cellular transport in eukayotic cells, sometimes encounter traffic jam that manifests as a disease of the organism. Similarly, traffic jam of collagenase MMP-1, which moves on the collagen fibrils of the extracellular matrix of vertebrates, has also been observed in recent experime...
February 22, 2007
Traffic-like collective movements are observed at almost all levels of biological systems. Molecular motor proteins like, for example, kinesin and dynein, which are the vehicles of almost all intra-cellular transport in eukayotic cells, sometimes encounter traffic jam that manifests as a disease of the organism. Similarly, traffic jam of collagenase MMP-1, which moves on the collagen fibrils of the extracellular matrix of vertebrates, has also been observed in recent experime...
February 27, 2020
Within cells, vesicles and proteins are actively transported several micrometers along the cytoskeletal filaments. The transport along microtubules is propelled by dynein and kinesin motors, which carry the cargo in opposite directions. Bidirectional intracellular transport is performed with great efficiency, even under strong confinement, as for example in the axon. For this kind of transport system, one would expect generically cluster formation. In this work, we discuss th...
November 16, 2020
In cells, cytoskeletal filament networks are responsible for cell movement, growth, and division. Filaments in the cytoskeleton are driven and organized by crosslinking molecular motors. In reconstituted cytoskeletal systems, motor activity is responsible for far-from-equilibrium phenomena such as active stress, self-organized flow, and spontaneous nematic defect generation. How microscopic interactions between motors and filaments lead to larger-scale dynamics remains incomp...
April 6, 2006
Three problems in the statistical mechanics of models for an assembly of molecular motors interacting with cytoskeletal filaments are reviewed. First, a description of the hydrodynamical behaviour of density-density correlations in fluctuating ratchet models for interacting molecular motors is outlined. Numerical evidence indicates that the scaling properties of dynamical behavior in such models belong to the KPZ universality class. Second, the generalization of such models t...
June 7, 2016
Cytoskeletal motor proteins are involved in major intracellular transport processes which are vital for maintaining appropriate cellular function. The motor exhibits distinct states of motility: active motion along filaments, and effectively stationary phase in which it detaches from the filaments and performs passive diffusion in the vicinity of the detachment point due to cytoplasmic crowding. The transition rates between motion and pause phases are asymmetric in general, a...
July 16, 2014
Many different types of cellular cargos are transported bidirectionally along microtubules by teams of molecular motors. The motion of this cargo-motors system has been experimentally characterized in vivo as processive with rather persistent directionality. Different theoretical approaches have been suggested in order to explore the origin of this kind of motion. An effective theoretical approach, introduced by M\"uller et al., describes the cargo dynamics as a tug-of-war be...
February 13, 2016
Power-law dwell times have been observed for molecular motors in living cells, but the origins of these trapped states are not known. We introduce a minimal model of motors moving on a two-dimensional network of filaments, and simulations of its dynamics exhibit statistics comparable to those observed experimentally. Analysis of the model trajectories, as well as experimental particle tracking data, reveals a state in which motors cycle unproductively at junctions of three or...
December 19, 2010
Many cell functions are accomplished thanks to intracellular transport mechanisms of macromolecules along filaments. Molecular motors such as dynein or kinesin are proteins playing a primary role in these processes. The behavior of such proteins is quite well understood when there is only one of them moving a cargo particle. Indeed, numerous in vitro experiments have been performed to derive accurate models for a single molecular motor. However, in vivo macromolecules are oft...