February 28, 2005
Similar papers 2
April 7, 2015
Analysis of degree-degree dependencies in complex networks, and their impact on processes on networks requires null models, i.e. models that generate uncorrelated scale-free networks. Most models to date however show structural negative dependencies, caused by finite size effects. We analyze the behavior of these structural negative degree-degree dependencies, using rank based correlation measures, in the directed Erased Configuration Model. We obtain expressions for the scal...
April 4, 2006
We analyze a model that interpolates between scale-free and Erdos-Renyi networks. The model introduced generates a one-parameter family of networks and allows to analyze the role of structural heterogeneity. Analytical calculations are compared with extensive numerical simulations in order to describe the transition between these two important classes of networks. Finally, an application of the proposed model to the study of the percolation transition is presented.
July 5, 1999
Random networks with complex topology are common in Nature, describing systems as diverse as the world wide web or social and business networks. Recently, it has been demonstrated that most large networks for which topological information is available display scale-free features. Here we study the scaling properties of the recently introduced scale-free model, that can account for the observed power-law distribution of the connectivities. We develop a mean-field method to pre...
June 14, 2006
In this paper we describe the emergence of scale-free degree distributions from statistical mechanics principles. We define an energy associated to a degree sequence as the logarithm of the number of indistinguishable simple networks it is possible to draw given the degree sequence. Keeping fixed the total number of nodes and links, we show that the energy of scale-free distribution is much higher than the energy associated to the degree sequence of regular random graphs. Thi...
May 31, 2013
The concept of scale-free networks has been widely applied across natural and physical sciences. Many claims are made about the properties of these networks, even though the concept of scale-free is often vaguely defined. We present tools and procedures to analyse the statistical properties of networks defined by arbitrary degree distributions and other constraints. Doing so reveals the highly likely properties, and some unrecognised richness, of scale-free networks, and cast...
August 31, 2006
We introduce a simple one-parameter network growth algorithm which is able to reproduce a wide variety of realistic network structures but without having to invoke any global information about node degrees such as preferential-attachment probabilities. Scale-free networks arise at the transition point between quasi-random and quasi-ordered networks. We provide a detailed formalism which accurately describes the entire network range, including this critical point. Our formalis...
December 10, 2002
Analytic solution for the average path length in a large class of random graphs is found. We apply the approach to classical random graphs of Erd\"{o}s and R\'{e}nyi (ER) and to scale-free networks of Barab\'{a}si and Albert (BA). In both cases our results confirm previous observations: small world behavior in classical random graphs $l_{ER} \sim \ln N$ and ultra small world effect characterizing scale-free BA networks $l_{BA} \sim \ln N/\ln\ln N$. In the case of scale-free r...
June 30, 2002
We define a statistical ensemble of non-degenerate graphs, i.e. graphs without multiple- and self-connections between nodes. The node degree distribution is arbitrary, but the nodes are assumed to be uncorrelated. This completes our earlier publication \cite{bck}, where trees and degenerate graphs were considered. An efficient algorithm generating non-degenerate graphs is constructed. The corresponding computer code is available on request. Finite-size effects in scale-free g...
September 7, 2002
We study a recently introduced class of scale-free networks showing a high clustering coefficient and non-trivial connectivity correlations. We find that the connectivity probability distribution strongly depends on the fine details of the model. We solve exactly the case of low average connectivity, providing also exact expressions for the clustering and degree correlation functions. The model also exhibits a lack of small world properties in the whole parameters range. We d...
November 30, 2015
Scale-free networks arise from power-law degree distributions. Due to the finite size of real-world networks, the power law inevitably has a cutoff at some maximum degree $\Delta$. We investigate the relative size of the giant component $S$ in the large-network limit. We show that $S$ as a function of $\Delta$ increases fast when $\Delta$ is just large enough for the giant component to exist, but increases ever more slowly when $\Delta$ increases further. This makes that whil...