April 12, 2005
Similar papers 4
September 27, 1999
A simple model for flowing sand on an inclined plane is introduced. The model is related to recent experiments by Douady and Daerr [Nature 399, 241 (1999)] and reproduces some of the experimentally observed features. Avalanches of intermediate size appear to be compact, placing the critical behavior of the model into the universality class of compact directed percolation. On very large scales, however, the avalanches break up into several branches leading to a crossover from ...
October 23, 2014
In this study, we have investigated the fluctuations of particle motion, i.e. the non-affine motion, during the avalanche process, discovering a rich dynamics from the microscopic to the macroscopic scales. We find that there is strong correlation between the magnitude of the velocity fluctuation and the velocity magnitude in the spatial and temporal domains. The possible connection between this finding and STZ is discussed based on the direct measurement of the T1 events. In...
October 1, 2009
Dense granular flows are often unstable and form inhomogeneous structures. Although significant advances have been recently made in understanding simple flows, instabilities of such flows are often not understood. We present experimental and numerical results that show the formation of longitudinal stripes that arise from instability of the uniform flowing state of granular media on a rough inclined plane. The form of the stripes depends critically on the mean density of the ...
March 2, 2018
In the present article we consider the problem of underwater avalanches propagating over moderate slopes. The main goal of our work is to investigate the avalanche front velocity selection mechanism when it propagates downwards. In particular, we show that the front velocity does not depend univocally on the mass of sediments. This phenomenon is investigated and explained in our study. Moreover, we derive from the first principles a depth-averaged model. Then, we assume that ...
August 30, 2001
We present a new instability observed in rapid granular flows down rough inclined planes. For high inclinations and flow rates, the free surface of the flow experiences a regular deformation in the transverse direction. Measurements of the surface velocities imply that this instability is associated with the formation of longitudinal vortices in the granular flow. From the experimental observations, we propose a mechanism for the longitudinal vortex formation based on the c...
August 25, 2024
Jamming transitions and the rheology of granular avalanches in fluids are investigated using experiments and numerical simulations. Simulations use the lattice-Boltzmann method coupled with the discrete element method, providing detailed stress and deformation data. Both simulations and experiments present a perfect match with each other in carefully conducted deposition experiments, validating the simulation method. We analyze transient rheological laws and jamming transitio...
March 21, 2002
Large scale computer simulations are presented to investigate the avalanche statistics of sand piles using molecular dynamics. We could show that different methods of measurement lead to contradicting conclusions, presumably due to avalanches not reaching the end of the experimental table.
May 4, 2009
To gain a better understanding of the surfaces of planets and small bodies in the solar system, the flow behavior of granular material for various gravity levels is of utmost interest. We performed a set of reduced-gravity measurements to analyze the flow behavior of granular matter with a quasi-2D hourglass under coarse-vacuum conditions and with a tilting avalanche box. We used the Bremen drop tower and a small centrifuge to achieve residual-gravity levels between 0.01 g an...
January 18, 2025
We report on chute measurements of the free-surface velocity $v$ in dense flows of spheres and diverse sands and spheres-sand mixtures down rough inclines. These and previous measurements are inconsistent with standard flow rules, in which the Froude number $v/\sqrt{gh}$ scales linearly with $h/h_s$ or $(\tan\theta/\mu_r)^2h/h_s$, where $\mu_r$ is the dynamic friction coefficient, $h$ the flow thickness, and $h_s(\theta)$ its smallest value that permits a steady, uniform dens...
June 19, 2017
Fluidisation is the process by which the weight of a bed of particles is supported by a gas flow passing through it from below. When fluidised materials flow down an incline, the dynamics of the motion differ from their non-fluidised counterparts because the granular agitation is no longer required to support the weight of the flowing layer. Instead, the weight is borne by the imposed gas flow and this leads to a greatly increased flow mobility. In this paper, a framework is ...