April 13, 2005
Similar papers 4
December 10, 2004
We present here the design of nano-inclusions made of properly arranged collections of plasmonic metallic nano-particles that may exhibit a resonant magnetic dipole collective response in the visible domain. When such inclusions are embedded in a host medium, they may provide metamaterials with negative effective permeability at optical frequencies. We also show how the same inclusions may provide resonant electric dipole response and, when combining the two effects at the sa...
July 5, 2003
Some physically interesting properties and effects of wave propagation in biaxially anisotropic left-handed materials are investigated in this paper. We show that in the biaxially gyrotropic left-handed material, the left-right coupling of circularly polarized light arises due to the negative indices in permittivity and permeability tensors of gyrotropic media. It is well known that the geometric phases of photons inside a curved fiber in previous experiments often depend on ...
April 2, 2010
Isotropic negative index metamaterials (NIMs) are highly desired, particularly for the realization of ultra-high resolution lenses. However, existing isotropic NIMs function only two-dimensionally and cannot be miniaturized beyond microwaves. Direct laser writing processes can be a paradigm shift toward the fabrication of three-dimensionally (3D) isotropic bulk optical metamaterials, but only at the expense of an additional design constraint, namely connectivity. Here, we dem...
January 8, 2013
Metamaterials are patterned metallic structures which permit access to a novel electromagnetic response, negative index of refraction, impossible to achieve with naturally occurring materials. Using the Babinet principle, the complementary split ring resonator (SRR) is etched in a metallic plate to provide negative \epsilon, with perpendicular direction. Here we propose a new design, etched in a metallic plate to provide negative magnetic permeability \mu, with perpendicular ...
August 22, 2004
Here I present an overview of recent studies of the phenomenon of negative refraction and left-handed materials. I will discuss some basic questions pertinent to the problem. It is pointed out that the current claims of negative refraction and left handed materials are not conclusive. To support our consideration, I will start with the fundamental physics.
November 3, 2005
A scheme of left-handed metamaterial (LHM) composed of superconducting quantum interference devices (SQUIDs) and conducting wires is proposed. The permeability of a probe field can be smoothly tuned over a wide range with another electromagnetic (coupling) field due to quantum interference effect. Similar to electromagnetically induced transparency (EIT) of atomic systems, the absorption of the probe field can be strongly suppressed even in the case of negative permeability. ...
July 1, 2009
We demonstrate experimentally and numerically that nonplanar chiral metamaterials give giant optical activity, circular dichroism, and negative refractive index. The transmission, reflection, and the retrieval results of the experiments agree pretty well with the simulations. This is an important step toward the design and fabrication of three-dimensional isotropic chiral metamaterials.
August 31, 2004
We review the intensively discussed ideas about wave propagation and refraction in media where both electric permittivity and magnetic permeability are negative. The criticism against negative refraction as violating the causality principle is considered. Starting from the initial wave equations, refraction of beams at the boundary of a left-handed medium is analyzed. The physics of a perfect lens formed by a flat layer of a left-handed material is considered.
February 23, 2007
A [pi]-shaped metallic metamaterial (geometrically, a combination medium of C-shaped resonators and continuous wires) is proposed to numerically investigate its transmission band near the resonant frequency, where otherwise it should be a negative-permeability (or negative-permittivity) stop band if either the C-shaped or continuous-wire constituent is separately considered. However, in contrast to the left-handed materials (LHMs)composed of split-ring resonators and wires as...
August 10, 2005
A wedge-shaped structure made of split-ring resonators (SRR) and wires is numerically simulated to evaluate its refraction behavior. Four frequency bands, namely, the stop band, left-handed band, ultralow-index band, and positive-index band, are distinguished according to the refracted field distributions. Negative phase velocity inside the wedge is demonstrated in the left-handed band and the Snell's law is conformed in terms of its refraction behaviors in different frequenc...