September 22, 2024
Logarithmic aging phenomena are prevalent in various systems, including electronic materials and biological structures. This study utilizes a generalized continuous time random walk (CTRW) framework to investigate the mechanisms behind the logarithmic aging phenomena. By incorporating non-Markovian jump processes with significant memory effects, we modify traditional diffusion models to exhibit logarithmic decay in both survival and return probabilities. In addition, we analy...
July 18, 2017
The distribution of a population throughout the physiological age of the individuals is very relevant information in population studies. It has been modeled by the Langevin and the Fokker- Planck equations. A major problem with these equations is that they allow the physiological age to move back in time. This paper proposes an Infinitesimally ratcheted random walk as a way to solve that problem. Two mathematical representations are proposed. One of them uses a non-local scal...
October 24, 2024
Time perception is crucial for a coherent human experience. As life progresses, our perception of the passage of time becomes increasingly non-uniform, often feeling as though it accelerates with age. While various causes for this phenomenon have been theorized, a comprehensive mathematical and theoretical framework remains underexplored. This study aims to elucidate the mechanisms behind perceived time dilation by integrating classical and revised psychophysical theorems wit...
February 7, 2024
Ignoring the differences between countries, human reproductive and dispersal behaviors can be described by some standardized models, so whether there is a universal law of population growth hidden in the abundant and unstructured data from various countries remains unclear. The age-specific population data constitute a three-dimensional tensor containing more comprehensive information. The existing literature often describes the characteristics of global or regional populatio...
April 22, 2004
The Gompertz model since 1825 has significantly contributed to interpretation of ageing in biological and social sciences. However, in modern research findings, it is clear that the Gompertz model is not successful to describe the whole demographic trajectories. In this letter, a new demographic model is introduced especially to describe human demographic trajectories, for example, for Sweden (2002). The new model is derived from the Weibull model with an age-dependent shape ...
June 15, 2021
Infant deaths and old age deaths are very different. The former are mostly due to severe congenital malformations of one or a small number of specific organs. On the contrary, old age deaths are largely the outcome of a long process of deterioration which starts in the 20s and affects almost all organs. In terms of age-specific death rates, there is also a clear distinction: the infant death rate falls off with age, whereas the adult and old age death rate increases exponenti...
May 3, 2002
The equation of state for a liquid in equilibrium, written in the potential energy landscape formalism, is generalized to describe out-of-equilibrium conditions. The hypothesis that during aging the system explores basins associated to equilibrium configurations is the key ingredient in the derivation. Theoretical predictions are successfully compared with data from molecular dynamics simulations of different aging processes, such as temperature and pressure jumps.
January 4, 2025
Addressing the unavoidable bias inherent in supervised aging clocks, we introduce Sundial, a novel framework that models molecular dynamics through a diffusion field, capturing both the population-level aging process and the individual-level relative aging order. Sundial enables unbiasedestimation of biological age and the forecast of aging roadmap. Fasteraging individuals from Sundial exhibit a higher disease risk compared to those identified from supervised aging clocks. Th...
August 14, 2020
Living systems are subject to the arrow of time; from birth, they undergo complex transformations (self-organization) in a constant battle for survival, but inevitably ageing and disease trap them to death. Can ageing be understood and eventually reversed? What tools can be employed to further our understanding of ageing? The present article is an invitation for biologists and clinicians to consider key conceptual ideas and computational tools (known to mathematicians and phy...
November 25, 2018
We solve a lifecycle model in which the consumer's chronological age does not move in lockstep with calendar time. Instead, biological age increases at a stochastic non-linear rate in time like a broken clock that might occasionally move backwards. In other words, biological age could actually decline. Our paper is inspired by the growing body of medical literature that has identified biomarkers which indicate how people age at different rates. This offers better estimates of...