June 5, 2005
In this letter we investigate the effects of dipole-dipole interactions on the vortex lattices in fast rotating Bose-Einstein condensates. For single planar condensate, we show that the triangular lattice structure will be unfavorable when the s-wave interaction is attractive and exceeds a critical value. It will first change to a square lattice, and then become more and more flat with the increase of s-wave attraction, until the collapse of the condensate. For an array of coupled planar condensates, we discuss how the dipole-dipole interactions between neighboring condensates compete with the quantum tunneling processes, which affects the relative displacement of two neighboring vortex lattices and leads to the loss of phase coherence between different condensates.
Similar papers 1
February 5, 2014
We consider a rapidly rotating two-component Bose-Einstein condensate with short-range s-wave interactions as well as dipolar coupling. We calculate the phase diagram of vortex lattice structures as a function of the intercomponent s-wave interaction and the strength of the dipolar interaction. We find that the long-range interactions cause new vortex lattice structures to be stable and lead to a richer phase diagram. Our results reduce to the previously found lattice structu...
October 25, 2006
We study the ground states of rotating atomic Bose-Einstein condensates with dipolar interactions. We present the results of numerical studies on a periodic geometry which show vortex lattice ground states of various symmetries: triangular and square vortex lattices, "stripe crystal" and "bubble crystal". We present the phase diagram (for systems with a large number of vortices) as a function of the ratio of dipolar to contact interactions and of the chemical potential. We di...
January 22, 2018
Based on the two-dimensional mean-field equations for pancake-shaped dipolar Bose-Einstein condensates in a rotating frame with both attractive and repulsive dipole-dipole interaction (DDI) as well as arbitrary polarization angle, we study the profiles of the single vortex state and show how the critical rotational frequency change with the s-wave contact interaction strengths, DDI strengths and the polarization angles. In addition, we find numerically that at the `magic angl...
February 18, 2009
The non-local non-linearity introduced by the dipole-dipole interaction plays a crucial role in the physics of dipolar Bose-Einstein condensates. In particular, it may distort significantly the stability of straight vortex lines due to the rotonization of the Kelvin-wave spectrum. In this paper we analyze this instability showing that it leads to a second-order-like phase transition from a straight vortex-line into novel helical or snake-like configurations, depending on the ...
June 20, 2019
The behaviour of a harmonically trapped dipolar Bose-Einstein condensate with its dipole moments rotating at angular frequencies lower than the transverse harmonic trapping frequency is explored in the co-rotating frame. We obtain semi-analytical solutions for the stationary states in the Thomas-Fermi limit of the corresponding dipolar Gross-Pitaevskii equation and utilise linear stability analysis to elucidate a phase diagram for the dynamical stability of these stationary s...
June 26, 2015
We study the three-dimensional ground state vortex lattice structures of purely dipolar Bose-Einstein condensate (BEC). By using the mean-field model we obtain a stability diagram for the vortex states in purely dipolar BECs as a function of harmonic trap aspect ratio ($\lambda$) and dipole-dipole interaction strength ($D$) under rotation. Rotating the condensate within the unstable region leads to collapse, while in the stable region furnishes stable vortex lattices of dipol...
May 31, 2005
We show that dipolar interactions have dramatic effects on the groundstates of rotating atomic Bose gases in the weak interaction limit. With increasing dipolar interaction (relative to the net contact interaction), the mean-field, or high filling fraction, groundstate undergoes a series of transitions between vortex lattices of different symmetries: triangular, square, ``stripe'', and ``bubble'' phases. We also study the effects of dipolar interactions on the quantum fluids ...
July 21, 2010
We have computed phase diagrams for rotating spin-1 Bose-Einstein condensates with long-range magnetic dipole-dipole interactions. Spin textures including vortex sheets, staggered half-quantum- and skyrmion vortex lattices and higher order topological defects have been found. These systems exhibit both superfluidity and magnetic crystalline ordering and they could be realized experimentally by imparting angular momentum in the condensate.
August 14, 2006
We calculate the critical rotation frequency at which a vortex state becomes energetically favorable over the vortex-free ground state in a harmonically trapped Bose-Einstein condensate whose atoms have dipole-dipole interactions as well as the usual s-wave contact interactions. In the Thomas-Fermi (hydrodynamic) regime, dipolar condensates in oblate cylindrical traps (with the dipoles aligned along the axis of symmetry of the trap) tend to have lower critical rotation freque...
March 7, 2003
We investigate the structure of vortex states in rotating two-component Bose-Einstein condensates with equal intracomponent but varying intercomponent coupling constants. A phase diagram in the intercomponent-coupling versus rotation-frequency plane reveals rich equilibrium structures of vortex states. As the ratio of intercomponent to intracomponent couplings increases, the interlocked vortex lattices undergo phase transitions from triangular to square, to double-core lattic...