July 14, 2005
Similar papers 3
July 13, 2000
Recent work on the structure of social networks and the internet has focussed attention on graphs with distributions of vertex degree that are significantly different from the Poisson degree distributions that have been widely studied in the past. In this paper we develop in detail the theory of random graphs with arbitrary degree distributions. In addition to simple undirected, unipartite graphs, we examine the properties of directed and bipartite graphs. Among other results...
October 2, 2018
The focus of this work is on estimation of the in-degree distribution in directed networks from sampling network nodes or edges. A number of sampling schemes are considered, including random sampling with and without replacement, and several approaches based on random walks with possible jumps. When sampling nodes, it is assumed that only the out-edges of that node are visible, that is, the in-degree of that node is not observed. The suggested estimation of the in-degree dist...
January 8, 2023
Network (or graph) sparsification compresses a graph by removing inessential edges. By reducing the data volume, it accelerates or even facilitates many downstream analyses. Still, the accuracy of many sparsification methods, with filtering-based edge sampling being the most typical one, heavily relies on an appropriate definition of edge importance. Instead, we propose a different perspective with a generalized local-property-based sampling method, which preserves (scaled) l...
February 6, 2005
This article addresses the degree distribution of subnetworks, namely the number of links between the nodes in each subnetwork and the remainder of the structure (cond-mat/0408076). The transformation from a subnetwork-partitioned model to a standard weighted network, as well as its inverse, are formalized. Such concepts are then considered in order to obtain scale free subnetworks through design or through a dynamics of node exchange. While the former approach allows the imm...
May 17, 2004
We present an algorithm for generating random networks with arbitrary degree distribution and Clustering (frequency of triadic closure). We use this algorithm to generate networks with exponential, power law, and poisson degree distributions with variable levels of clustering. Such networks may be used as models of social networks and as a testable null hypothesis about network structure. Finally, we explore the effects of clustering on the point of the phase transition where...
February 7, 2014
The amount of large-scale real data around us increase in size very quickly and so does the necessity to reduce its size by obtaining a representative sample. Such sample allows us to use a great variety of analytical methods, whose direct application on original data would be infeasible. There are many methods used for different purposes and with different results. In this paper we outline a simple and straightforward approach based on analyzing the nearest neighbors (NN) th...
August 27, 2010
This work is divided into two main parts. The first part is devoted to exploring the connectivity of random subgraphs of cartesian products of $K_1$, $K_2$, and $P_3$. In the second part, the author presents a short review of the results about network reliability.
December 2, 2015
How can researchers test for heterogeneity in the local structure of a network? In this paper, we present a framework that utilizes random sampling to give subgraphs which are then used in a goodness of fit test to test for heterogeneity. We illustrate how to use the goodness of fit test for an analytically derived distribution as well as an empirical distribution. To demonstrate our framework, we consider the simple case of testing for edge probability heterogeneity. We exam...
July 4, 2003
It appeared recently that the classical random graph model used to represent real-world complex networks does not capture their main properties. Since then, various attempts have been made to provide accurate models. We study here a model which achieves the following challenges: it produces graphs which have the three main wanted properties (clustering, degree distribution, average distance), it is based on some real-world observations, and it is sufficiently simple to make i...
February 19, 2003
Understanding the subgraph distribution in random networks is important for modelling complex systems. In classic Erdos networks, which exhibit a Poissonian degree distribution, the number of appearances of a subgraph G with n nodes and g edges scales with network size as \mean{G} ~ N^{n-g}. However, many natural networks have a non-Poissonian degree distribution. Here we present approximate equations for the average number of subgraphs in an ensemble of random sparse directe...