August 9, 2005
We have investigated the expansion of a Bose-Einstein condensate (BEC) of strongly magnetic chromium atoms. The long-range and anisotropic magnetic dipole-dipole interaction leads to an anisotropic deformation of the expanding Cr-BEC which depends on the orientation of the atomic dipole moments. Our measurements are consistent with the theory of dipolar quantum gases and show that a Cr-BEC is an excellent model system to study dipolar interactions in such gases.
Similar papers 1
August 28, 2008
We report on experiments exploring the physics of dipolar quantum gases using a Chromium Bose-Einstein condensate (BEC). By means of a Feshbach resonance, it is possible to reduce the effects of short range interactions and reach a regime where the physics is governed by the long-range, anisotropic dipole-dipole interaction between the large ($6 \mu_{\rm B}$) magnetic moments of Chromium atoms. Several dramatic effects of the dipolar interaction are observed: the usual invers...
June 12, 2007
We report on the realization of a Chromium Bose-Einstein condensate (BEC) with strong dipolar interaction. By using a Feshbach resonance, we reduce the usual isotropic contact interaction, such that the anisotropic magnetic dipole-dipole interaction between 52Cr atoms becomes comparable in strength. This induces a change of the aspect ratio of the cloud, and, for strong dipolar interaction, the inversion of ellipticity during expansion - the usual "smoking gun" evidence for B...
January 7, 2022
Since the achievement of quantum degeneracy in gases of chromium atoms in 2004, the experimental investigation of ultracold gases made of highly magnetic atoms has blossomed. The field has yielded the observation of many unprecedented phenomena, in particular those in which long-range and anisotropic dipole-dipole interactions play a crucial role. In this review, we aim to present the aspects of the magnetic quantum-gas platform that make it unique for exploring ultracold and...
August 18, 2005
The recent achievement of Bose-Einstein condensation of chromium atoms [1] has opened longed-for experimental access to a degenerate quantum gas with long-range and anisotropic interaction. Due to the large magnetic moment of chromium atoms of 6 {$\mu$}B, in contrast to other Bose- Einstein condensates (BECs), magnetic dipole-dipole interaction plays an important role in a chromium BEC. Many new physical properties of degenerate gases arising from these magnetic forces have b...
November 21, 2007
Ultra-cold atomic systems provide a new setting where to investigate the role of long-range interactions. In this paper we will review the basics features of those physical systems, in particular focusing on the case of Chromium atoms. On the experimental side, we report on the observation of dipolar effects in the expansion dynamics of a Chromium Bose-Einstein condensate. By using a Feshbach resonance, the scattering length characterising the contact interaction can be str...
March 2, 2005
We report on the generation of a Bose-Einstein condensate in a gas of chromium atoms, which will make studies of the effects of anisotropic long-range interactions in degenerate quantum gases possible. The preparation of the chromium condensate requires novel cooling strategies that are adapted to its special electronic and magnetic properties. The final step to reach quantum degeneracy is forced evaporative cooling of 52Cr atoms within a crossed optical dipole trap. At a cri...
May 29, 2012
We measure the excitation spectrum of a dipolar Chromium Bose Einstein Condensate with Raman-Bragg spectroscopy. The energy spectrum depends on the orientation of the dipoles with respect to the excitation momentum, demonstrating an anisotropy which originates from the dipole-dipole interactions between the atoms. We compare our results with the Bogoliubov theory based on the local density approximation, and, at large excitation wavelengths, with numerical simulations of the ...
August 7, 2006
We have measured the relative strength $\epsilon_dd$ of the magnetic dipole-dipole interaction compared to the contact interaction in a chromium Bose-Einstein condensate. We analyze the asymptotic velocities of expansion of a dipolar chromium BEC with different orientations of the atomic magnetic dipole moments. By comparing them with numerical solutions of the hydrodynamic equations for dipolar condensates, we are able to determine $\epsilon_dd = 0.159\pm0.034$ with high acc...
May 29, 2006
Our recent measurements on the expansion of a chromium dipolar condensate after release from an optical trapping potential are in good agreement with an exact solution of the hydrodynamic equations for dipolar Bose gases. We report here the theoretical method used to interpret the measurement data as well as more details of the experiment and its analysis. The theory reported here is a tool for the investigation of different dynamical situations in time-dependent harmonic tra...
July 25, 2003
We have investigated both theoretically and experimentally dipolar relaxation in a gas of magnetically trapped chromium atoms. We have found that the large magnetic moment of 6 $\mu_B$ results in an event rate coefficient for dipolar relaxation processes of up to $3.2\cdot10^{-11}$ cm$^{3}$s$^{-1}$ at a magnetic field of 44 G. We present a theoretical model based on pure dipolar coupling, which predicts dipolar relaxation rates in agreement with our experimental observations....