September 22, 2005
Similar papers 3
September 13, 2004
In this paper, we present a simple model of scale-free networks that incorporates both preferential & random attachment and anti-preferential & random deletion at each time step. We derive the degree distribution analytically and show that it follows a power law with the degree exponent in the range of (2,infinity). We also find a way to derive an expression of the clustering coefficient for growing networks and compute the average path length through simulation.
December 19, 2001
We introduce a deterministic model for scale-free networks, whose degree distribution follows a power-law with the exponent $\gamma$. At each time step, each vertex generates its offsprings, whose number is proportional to the degree of that vertex with proportionality constant m-1 (m>1). We consider the two cases: first, each offspring is connected to its parent vertex only, forming a tree structure, and secondly, it is connected to both its parent and grandparent vertices, ...
January 9, 2005
Although the ``scale-free'' literature is large and growing, it gives neither a precise definition of scale-free graphs nor rigorous proofs of many of their claimed properties. In fact, it is easily shown that the existing theory has many inherent contradictions and verifiably false claims. In this paper, we propose a new, mathematically precise, and structural definition of the extent to which a graph is scale-free, and prove a series of results that recover many of the clai...
August 13, 2001
In this study we have carried out computer simulations of random walks on Watts-Strogatz-type small world networks and measured the mean number of visited sites and the return probabilities. These quantities were found to obey scaling behavior with intuitively reasoned exponents as long as the probability $p$ of having a long range bond was sufficiently low.
April 5, 2002
We propose a simple random process inducing various types of random graphs and the scale free random graphs among others. The model is of a threshold nature and differs from the preferential attachment approach discussed in the literature before. The degree statistics of a random graph in our model is governed by the control parameter $\eta$ stirring the pure exponential statistics for the degree distribution (at $\eta=0,$ when a threshold is changed each time a new edge ad...
November 22, 2018
We study a simple model in which the growth of a network is determined by the location of one or more random walkers. Depending on walker speed, the model generates a spectrum of structures situated between well-known limiting cases. We demonstrate that the average degree observed by a walker is related to the global variance. Modulating the extent to which the location of node attachment is determined by the walker as opposed to random selection is akin to scaling the speed ...
May 26, 2015
Sorry, there are some calculation errors in this paper
July 23, 2011
In this paper, we investigate random walks in a family of small-world trees having an exponential degree distribution. First, we address a trapping problem, that is, a particular case of random walks with an immobile trap located at the initial node. We obtain the exact mean trapping time defined as the average of first-passage time (FPT) from all nodes to the trap, which scales linearly with the network order $N$ in large networks. Then, we determine analytically the mean se...
December 31, 2011
Extensive empirical investigation has shown that a plethora of real networks synchronously exhibit scale-free and modular structure, and it is thus of great importance to uncover the effects of these two striking properties on various dynamical processes occurring on such networks. In this paper, we examine two cases of random walks performed on a class of modular scale-free networks with multiple traps located at several given nodes. We first derive a formula of the mean fir...
October 20, 2006
In this paper we propose a self-organized particle moving model on scale free network with the algorithm of the shortest path and preferential walk. The over-capacity property of the vertices in this particle moving system on complex network is studied from the holistic point of view. Simulation results show that the number of over-capacity vertices forms punctuated equilibrium processes as time elapsing, that the average number of over-capacity vertices under each local punc...