September 26, 2005
Similar papers 3
October 25, 2004
In a quantum-mechanical system, particle-hole duality implies that instead of studying particles, we can get equivalent information by studying the missing particles, the so-called holes. Using this duality picture for rotating fermion condensates the vortices appear as holes in the Fermi see. Here we predict that the formation of vortices in quantum dots at high magnetic fields causes oscillations in the energy spectrum which can be experimentally observed using accurate tun...
February 14, 2007
In this paper we show that the vortex states can be created not only in magnetically soft "small" (with the dipolar and exchange energy competition) cylindrical dots, but also in magnetically saturated "big" (when the exchange is neglected) cylindrical dots. A property associated with a vortex structure becomes evident from an analysis of confinement phenomena of magnetic oscillations in a ferrite disk with a dominating role of magnetic-dipolar (non-exchange-interaction) spec...
May 23, 2019
Quantum droplets may form out of a gaseous Bose-Einstein condensate, stabilized by quantum fluctuations beyond mean field. We show that multiple singly-quantized vortices may form in these droplets at moderate angular momenta in two dimensions. Droplets carrying these precursors of an Abrikosov lattice remain self-bound for certain timescales after switching off an initial harmonic confinement. Furthermore, we examine how these vortex-carrying droplets can be formed in a more...
June 26, 2019
In a harmonically-trapped rotating Bose-Einstein condensate (BEC), a vortex of large angular momentum decays to multiple vortices of unit angular momentum from an energetic consideration. We demonstrate the formation of a robust and dynamically stable giant vortex of large angular momentum in a harmonically trapped rotating BEC with a potential hill at the center, thus forming a Mexican hat like trapping potential. For a small inter-atomic interaction strength, a highly contr...
January 11, 2023
Creation of stable intrinsically anisotropic self-bound states with embedded vorticity is a challenging issue. Previously, no such states in Bose-Einstein condensates (BECs) or other physical settings were known. Dipolar BEC suggests a unique possibility to predict stable anisotropic vortex quantum droplets (AVQDs). We demonstrate that they can be created with the vortex' axis oriented \emph{perpendicular} to the polarization of dipoles. The stability area and characteristics...
December 23, 2004
Vortices can form when finite quantal systems are set to rotate. In the limit of small particle numbers the vortex formation in a harmonically trapped fermion system, with repulsively interacting particles, shows similarities to the corresponding boson system, with vortices entering the rotating cloud for increasing rotation. We show that for a larger number of fermions, $N\gtrsim15$, the fermion vortices compete and co-exist with (Chamon-Wen) edge-reconstructed ground states...
July 2, 2024
We consider a "symmetric" quantum droplet in two spatial dimensions, which rotates in a harmonic potential, focusing mostly on the limit of "rapid" rotation. We examine this problem using a purely numerical approach, as well as a semi-analytic Wigner-Seitz approximation (first developed by Baym, Pethick et al.) for the description of the state with a vortex lattice. Within this approximation we assume that each vortex occupies a cylindrical cell, with the vortex-core size tre...
October 21, 2010
The existence of nonlinear objects of the vortex type in two-dimensional magnetic systems presents itself as one of the most promising candidates for the construction of nanodevices, useful for storing data, and for the construction of reading and writing magnetic heads. The vortex appears as the ground state of a magnetic nanodisk whose magnetic moments interact via dipole-dipole potential?. In this work it is investigated the conditions for the formation of vortices in nano...
December 15, 2012
We report on the first mathematically rigorous proofs of a transition to a giant vortex state of a superfluid in rotating anharmonic traps. The analysis is carried out within two-dimensional Gross-Pitaevskii theory at large coupling constant and large rotational velocity and is based on precise asymptotic estimates on the ground state energy. An interesting aspect is a significant difference between 'soft' anharmonic traps (like a quartic plus quadratic trapping potential) an...
August 10, 2011
We present theoretical analysis and numerical studies of the quantized vortices in a rotating Bose-Einstein condensate with spatiotemporally modulated interaction in harmonic and anharmonic potentials, respectively. The exact quantized vortex and giant vortex solutions are constructed explicitly by similarity transformation. Their stability behavior has been examined by numerical simulation, which shows that a new series of stable vortex states (defined by radial and angular ...