September 28, 2005
Ultra-precision machining of metals, the breaking of nanowires under tensile stress and fracture of nanoscale materials are examples of technologically important processes which are both extremely difficult and costly to investigate experimentally. We describe a multiscale method for the simulation of such systems in which the energetically active region is modelled using a robust tight-binding scheme developed at the Naval Research Laboratory (NRL-TB) and the rest of the system is treated with molecular dynamics. We present a computer code implementing the method, geared towards non-equilibrium, cross-scaled tight-binding and molecular dynamics simulations. Apart from the presentation of the method and implementation, we discuss preliminary physical results obtained and discuss their validity.
Similar papers 1
November 3, 2017
We explore the malleability of ultra-small metal nanoparticles by means of ab initio calculations. It is revealed that, when strained, such nanoparticles exhibit complex behavior, including bifurcation between slow and fast quakes of their atomic structure, despite being few-body systems. We show the bifurcation to arise from the collapse of the nanoparticle's stiffness and a broken soft mode symmetry, and that whether a slow or fast quake occurs can be controlled by varying ...
September 18, 2001
In recent years it has become possible to study the properties of nanocrystalline metals through atomic-scale simulations of systems with realistic grain sizes. A brief overview of the main results is given, such as the observation of a reverse Hall-Petch effect - a softening of the metal when the grain size is reduced. The limitations of computer simulations are discussed, with a particular focus on the factors that may influence the reliability of this kind of simulations.
August 19, 1998
We discuss how simulations of mechanical properties of materials require descriptions at many different length scales --- from the nanoscale where an atomic description is appropriate, through a mesoscale where dislocation based descriptions may be useful, to macroscopic length scales. In some materials, such as nanocrystalline metals, the range of length scales is compressed and a polycrystalline material may be simulated at the atomic scale. The first part of the paper desc...
April 20, 2001
In this paper we present a modeling approach to bridge the atomistic with macroscopic scales in crystalline materials. The methodology combines identification and modeling of the controlling unit processes at microscopic level with the direct atomistic determination of fundamental material properties. These properties are computed using a many body Force Field derived from ab initio quantum-mechanical calculations. This approach is exercised to describe the mechanical respons...
October 21, 2009
Understanding nanomechanical response of materials represents a scientific challenge. Here, we have used in-situ electron microscopy to reveal drastic for the first time changes of structural behavior during deformation of 1-nm-wide metal rods as a function of temperature. At 300 K, stretched nanowires stay defect-free, while at 150 K, elongation is associated with planar defects. As size is reduced, energy barriers become so small that ambient thermal energy is sufficient to...
May 31, 2005
We present a multiscale modeling approach that concurrently couples quantum mechanical, classical atomistic and continuum mechanics simulations in a unified fashion for metals. This approach is particular useful for systems where chemical interactions in a small region can affect the macroscopic properties of a material. We discuss how the coupling across different scales can be accomplished efficiently, and we apply the method to multiscale simulations of an edge dislocation...
April 9, 2019
Predicting the structural response of advanced multiphase alloys and understanding the underlying microscopic mechanisms that are responsible for it are two critically important roles modeling plays in alloy development. An alloys demonstration of superior properties, such as high strength, creep resistance, high ductility, and fracture toughness, is not sufficient to secure its use in widespread application. Still, a good model is needed, to take measurable alloy properties,...
December 7, 1998
Nanocrystalline metals, i.e. metals with grain sizes from 5 to 50 nm, display technologically interesting properties, such as dramatically increased hardness, increasing with decreasing grain size. Due to the small grain size, direct atomic-scale simulations of plastic deformation of these materials are possible, as such a polycrystalline system can be modeled with the computational resources available today. We present molecular dynamics simulations of nanocrystalline copp...
April 17, 2004
We present a formalism for coupling a density functional theory-based quantum simulation to a classical simulation for the treatment of simple metallic systems. The formalism is applicable to multiscale simulations in which the part of the system requiring quantum-mechanical treatment is spatially confined to a small region. Such situations often arise in physical systems where chemical interactions in a small region can affect the macroscopic mechanical properties of a metal...
November 15, 2013
We perform a large-scale statistical analysis (> 2000 independent simulations) of the elongation and rupture of gold nanowires, probing the validity and scope of the recently proposed ductile-to-brittle transition that occurs with increasing nanowire length [Wu et. al., Nano Lett., 12, 910-914 (2012)]. To facilitate a high-throughput simulation approach, we implement the second-moment approximation to the tight-binding (TB-SMA) potential within HOOMD-Blue, a molecular dynamic...