December 19, 2005
Similar papers 2
October 2, 2022
We report density functional theory plus exact diagonalization of the multi-orbital Anderson impurity model calculations for the Co adatom on the top of Cu(001) surface. For the Co atom $d$-shell occupation $n_d \approx$ 8, a singlet many-body ground state and Kondo resonance are found, when the spin-orbit coupling is included in the calculations. The differential conductance is evaluated in a good agreement with the scanning tuneling microscopy measurements. The results illu...
August 6, 2003
A simple model is introduced to describe conductance measurements between a scanning tunneling microscope (STM) tip and a noble metal surface with adsorbed transition metal atoms which display the Kondo effect. The model assumes a realistic parameterization of the potential created by the surface and a d3z2-r2 orbital for the description of the adsorbate. Fano lineshapes associated with the Kondo resonance are found to be sensitive to details of the adsorbate-substrate intera...
September 22, 2000
The conduction electron density of states nearby a single magnetic impurity, as measured recently by scanning tunneling microscopy (STM), is calculated. It is shown that the Kondo effect induces a narrow Fano resonance as an intrinsic feature in the conduction electron density of states. The line shape varies with the distance between STM tip and impurity, in qualitative agreement with experiments, and is sensitive to details of the band structure. For a Co impurity the exper...
December 17, 2003
We have used low temperature scanning tunneling spectroscopy and atomic manipulation to study the role of surface-state electrons in the Kondo effect of an isolated cobalt atom adsorbed on Ag(111). We show that the observed Kondo signature remains unchanged in close proximity of a monoatomic step, where the local density of states of the surface-state electrons is strongly perturbed. This result indicates a minor role for surface-state electrons in the Kondo effect of cobalt,...
March 6, 2004
A nearly-free-electron (NFE) model to describe STM spectroscopy of (111) metal surfaces with Kondo impurities is presented. Surface states are found to play an important role giving a larger contribution to the conductance in the case of Cu(111) and Au(111) than Ag(111) surfaces. This difference arises from the farther extension of the Ag(111) surface state into the substrate. The different line shapes observed when Co is adsorbed on different substrates can be explained from...
October 18, 2018
We investigate equilibrium and transport properties of a copper phthalocyanine (CuPc) molecule adsorbed on Au(111) and Ag(111) surfaces. The CuPc molecule has essentially three localized orbitals close to the Fermi energy resulting in strong local Coulomb repulsion not accounted for properly in density functional calculations. Hence, they require a proper many-body treatment within, e.g., the Anderson impurity model (AIM). The occupancy of these orbitals varies with the subst...
May 18, 2009
We use a combination of first principles many-body methods and the numerical renormalization-group technique to study the Kondo regime of cobalt-porphyrin compounds adsorbed on a Cu(111) surface. We find the Kondo temperature to be highly sensitive to both molecule charging and distance to the surface, which can explain the variations observed in recent scanning tunneling spectroscopy measurements. We discuss the importance of many-body effects in the molecular electronic str...
October 1, 2008
Clusters containing a single magnetic impurity were investigated by scanning tunneling microscopy, spectroscopy, and ab initio electronic structure calculations. The Kondo temperature of a Co atom embedded in Cu clusters on Cu(111) exhibits a non-monotonic variation with the cluster size. Calculations model the experimental observations and demonstrate the importance of the local and anisotropic electronic structure for correlation effects in small clusters.
April 18, 2008
Low-temperature scanning tunneling spectroscopy reveals that the Kondo temperature T_K of Co atoms adsorbed on Cu/Co/Cu(100) multilayers varies between 60 K and 134 K as the Cu film thickness decreases from 20 to 5 atomic layers. The observed change of T_K is attributed to a variation of the density of states at the Fermi level \rho_F induced by quantum well states confined to the Cu film. A model calculation based on the quantum oscillations of \rho_F at the belly and the ne...
August 8, 2000
The spectroscopic characteristics of systems with adsorbed d impurities on noble metal surfaces should depend on the number and geometric arrangement of the adsorbed atoms and also on their d band filling. Recent experiments using scanning tunneling microscopy have probed the electronic structure of all 3d transition metal impurities and also of Co dimers adsorbed on Au(111), providing a rich variety of results. In this contribution we correlate those experimental results wit...