January 24, 2006
The dynamical properties of double-stranded DNA are studied in the framework of the Peyrard-Bishop-Dauxois model using Langevin dynamics. Our simulations are analyzed in terms of two probability functions describing coherently localized separations ("bubbles") of the double strand. We find that the resulting bubble distributions are more sharply peaked at the active sites than found in thermodynamically obtained distributions. Our analysis ascribes this to the fact that the bubble life-times significantly afects the distribution function. We find that certain base-pair sequences promote long-lived bubbles and we argue that this is due to a length scale competition between the nonlinearity and disorder present in the system.
Similar papers 1
July 5, 2006
The distribution of bubble lengths in double-stranded DNA is presented for segments of varying guanine-cytosine (GC) content, obtained with Monte Carlo simulations using the Peyrard-Bishop-Dauxois model at 310 K. An analytical description of the obtained distribution in the whole regime investigated, i.e., up to bubble widths of the order of tens of nanometers, is available. We find that the decay lengths and characteristic exponents of this distribution show two distinct reg...
August 20, 2020
We investigate the distribution of bubble lifetimes and bubble lengths in DNA at physiological temperature, by performing extensive molecular dynamics simulations with the Peyrard-Bishop-Dauxois (PBD) model, as well as an extended version (ePBD) having a sequence-dependent stacking interaction, emphasizing the effect of the sequences' guanine-cytosine (GC)/adenine-thymine (AT) content on these distributions. For both models we find that base pair-dependent (GC vs AT) threshol...
December 22, 2006
The local opening of DNA is an intriguing phenomenon from a statistical physics point of view, but is also essential for its biological function. For instance, the transcription and replication of our genetic code can not take place without the unwinding of the DNA double helix. Although these biological processes are driven by proteins, there might well be a relation between these biological openings and the spontaneous bubble formation due to thermal fluctuations. Mesoscopi...
November 4, 2005
It appears that thermally activated DNA bubbles of different sizes play central roles in important genetic processes. Here we show that the probability for the formation of such bubbles is regulated by the number of soft AT pairs in specific regions with lengths which at physiological temperatures are of the order of (but not equal to) the size of the bubble. The analysis is based on the Peyrard- Bishop-Dauxois model, whose equilibrium statistical properties have been accurat...
August 11, 2022
Understanding the inherent timescales of large bubbles in DNA is critical to a thorough comprehension of its physicochemical characteristics, as well as their potential role on helix opening and biological function. In this work we employ the coarse-grained Peyrard-Bishop-Dauxois model of DNA to study relaxation dynamics of large bubbles in homopolymer DNA, using simulations up to the microsecond time scale. By studying energy autocorrelation functions of relatively large bub...
February 15, 2008
The equilibrium statistical properties of DNA denaturation bubbles are examined in detail within the framework of the Peyrard-Bishop-Dauxois model. Bubble formation in homogeneous DNA is found to depend crucially on the presence of nonlinear base-stacking interactions. Small bubbles extending over less than 10 base pairs are associated with much larger free energies of formation per site than larger bubbles. As the critical temperature is approached, the free energy associate...
February 1, 2011
The paper uses mesoscopic, non-linear lattice dynamics based (Peyrard-Bishop-Dauxois, PBD) modeling to describe thermal properties of DNA below and near the denaturation temperature. Computationally efficient notation is introduced for the relevant statistical mechanics. Computed melting profiles of long and short heterogeneous sequences are presented, using a recently introduced reparametrization of the PBD model, and critically discussed. The statistics of extended open bub...
August 15, 2005
It has been speculated that bubble formation of several base-pairs due to thermal fluctuations is indicatory for biological active sites. Recent evidence, based on experiments and molecular dynamics (MD) simulations using the Peyrard-Bishop-Dauxois model, seems to point in this direction. However, sufficiently large bubbles appear only seldom which makes an accurate calculation difficult even for minimal models. In this letter, we introduce a new method that is orders of magn...
April 7, 2008
A simple Langevin approach is used to study stationary properties of the Peyrard-Bishop-Dauxois model for DNA, allowing known properties to be recovered in an easy way. Results are shown for the denaturation transition in homogeneous samples, for which some implications, so far overlooked, of an analogy with equilibrium wetting transitions are highlighted. This analogy implies that the order-parameter, asymptotically, exhibits a second order transition even if it may be very ...
October 26, 2010
We propose a model for the fluctuation dynamics of the local denaturation zones (bubbles) in double-stranded DNA. In our formulation, the DNA strand is model as a one dimensional Rouse chain confined at both the ends. The bubble is formed when the transverse displacement of the chain attains a critical value. This simple model effectively reproduces the autocorrelation function for the tagged base pair in the DNA strand as measured in the seminal single molecule experiment by...