February 17, 2006
Similar papers 3
May 3, 2007
The mechanism of carbon nanotube (CNT) nucleation and growth has been a mystery for over 15 years. Prior models have attempted the extension of older classical transport mechanisms. In July 2000, a more detailed and accurate nonclassical, relativistic mechanism was formulated considering the detailed dynamics of the electronics of spin and orbital rehybridization between the carbon and catalyst via novel mesoscopic phenomena and quantum dynamics. Ferromagnetic carbon was demo...
January 19, 2017
The electronic states in isolated single-wall carbon nanotubes (SWCNTs) have been considered as an ideal realization of a Tomonaga-Luttinger liquid (TLL). However, it remains unclear whether one-dimensional correlated states are realized under local environmental effects such as the formation of a bundle structure. Intertube effects originating from other adjacent SWCNTs within a bundle may drastically alter the one-dimensional correlated state. In order to test the validity ...
July 6, 2022
We report on experiments that quantify the role of a central electronic spin as a relaxation source for nuclear spins in its nanoscale environment. Our strategy exploits hyperpolarization injection from the electron as a means to controllably probe an increasing number of nuclear spins in the bath, and subsequently interrogate them with high fidelity. Our experiments are focused on a model system of a nitrogen vacancy (NV) center electronic spin surrounded by several hundred ...
March 24, 2014
Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have...
February 10, 2008
Electrons in atoms possess both spin and orbital degrees of freedom. In non-relativistic quantum mechanics, these are independent, resulting in large degeneracies in atomic spectra. However, relativistic effects couple the spin and orbital motion leading to the well-known fine structure in their spectra. The electronic states in defect-free carbon nanotubes (NTs) are widely believed to be four-fold degenerate, due to independent spin and orbital symmetries, and to also posses...
August 7, 2009
Hyperfine interaction (HFI) in carbon nanotube and graphene quantum dots is due to the presence of 13C atoms. We theoretically show that in these structures the short-range nature of the HFI gives rise to a coupling between the valley degree of freedom of the electron and the nuclear spin, in addition to the usual electron spin-nuclear spin coupling. We predict that this property of the HFI affects the Pauli blockade transport in carbon-based double quantum dots. In particula...
August 9, 2002
We theoretically estimate the electron-phonon coupling constant lambda for metallic single-walled carbon nanotubes with a diameter of 1.4 nm. The partial electron-phonon coupling constant for the hardest phonon mode is estimated to be about 0.0036, in good agreement with that deduced from Raman scattering data assuming superconductivity above room temperature. Assuming no superconductivity, we estimate the room-temperature inelastic mean free path l_ep due to electron-phonon ...
December 17, 2009
We study experimentally demonstrated single-electron ${}^{12}$C CNT QD with significant spin-orbit interaction as a scalable quantum computer candidate. Both electron spin and orbital angular momentum can serve as a logical qubit for quantum processing. We introduce macroscopic quantum memory for the system in a form of injected either magnetic or spin carrying atomic ensemble into the nanotube. CNT provides with a stable atomic trap in finite temperature and with one-dimensi...
July 6, 2016
The decay of spin-valley states is studied in a suspended carbon nanotube double quantum dot via leakage current in Pauli blockade and via dephasing and decoherence of a qubit. From the magnetic field dependence of the leakage current, hyperfine and spin-orbit contributions to relaxation from blocked to unblocked states are identified and explained quantitatively by means of a simple model. The observed qubit dephasing rate is consistent with the hyperfine coupling strength e...
November 11, 2016
We report the synthesis of a novel isotope engineered $^{13}{\rm C}$--$^{12}{\rm C}$ heteronuclear nanostructure: single-wall carbon nanotubes made of $^{13}{\rm C}$ enriched clusters which are embedded in natural carbon regions. The material is synthesized with a high temperature annealing from $^{13}{\rm C}$ enriched benzene and natural ${\rm C}_{60}$, which are co-encapsulated inside host SWCNTs in an alternating fashion. The Raman 2D line indicates that the $^{13}{\rm C}$...