March 20, 2006
Similar papers 4
December 16, 2005
We investigate the effect of spatial symmetries on phase coherent electronic transport through chaotic quantum dots. For systems which have a spatial symmetry that interchanges the source and drain leads, we find in the framework of random matrix theory that the density of the transmission eigenvalues is indepedent of the number of channels N in the leads. As a consequence, the weak localization correction to the conductance vanishes in these systems, and the shot noise suppr...
April 24, 2003
The shot noise of spin polarized electrons is shown to be generically dependent upon spin-flip processes. Such a situation represents perhaps the simplest instance where the two-particle character of current fluctuations out of equilibrium is explicit, leading to trinomial statistics of charge transfer in a single channel model. We calculate the effect of spin-orbit coupling, magnetic impurities, and precession in an external magnetic field on the noise in the experimentally ...
March 21, 1994
The conductance of a ballistic quantum dot (having chaotic classical dynamics and being coupled by ballistic point contacts to two electron reservoirs) is computed on the single assumption that its scattering matrix is a member of Dyson's circular ensemble. General formulas are obtained for the mean and variance of transport properties in the orthogonal (beta=1), unitary (beta=2), and symplectic (beta=4) symmetry class. Applications include universal conductance fluctuations,...
July 25, 2004
We present a theoretical analysis of the effect of inelastic electron scattering on current and its fluctuations in a mesoscopic quantum dot (QD) connected to two leads, based on a recently developed nonperturbative technique involving the approximate mapping of the many-body electron-phonon coupling problem onto a multichannel single-electron scattering problem. In this, we apply the B\"uttiker scattering theory of shot noise for a two-terminal mesoscopic device to the multi...
April 15, 2003
The shot noise of a one-dimensional wire interrupted by two barriers shows interesting features related to the interplay between Coulomb blockade effects, Luttinger correlations and discrete excitations. At small bias the Fano factor reaches the lowest attainable value, 1/2, irrespective of the ratio of the two junction resistances. At larger voltages this asymmetry is power-law renormalized by the interaction strength. We discuss how the measurement of current and these feat...
August 13, 1997
We show that the classical dynamics of independent particles can determine the quantum properties of interacting electrons in the ballistic regime. This connection is established using diagrammatic perturbation theory and semiclassical finite-temperature Green functions. Specifically, the orbital magnetism is greatly enhanced over the Landau susceptibility by the combined effects of interactions and finite size. The presence of families of periodic orbits in regular systems m...
May 10, 2001
In a two-dimensional quantum dot in a GaAs heterostructure, the spin-orbit scattering rate is substantially reduced below the rate in a bulk two-dimensional electron gas [B.I. Halperin et al, Phys. Rev. Lett. 86, 2106 (2001)]. Such a reduction can be undone if the spin-orbit coupling parameters acquire a spatial dependence, which can be achieved, e.g., by a metal gate covering only a part of the quantum dot. We calculate the effect of such spatially non-uniform spin-orbit sca...
September 19, 2006
We consider small ballistic quantum dots weakly coupled to the leads in the chaotic regime and look for significant spin-orbit effects. We find that these effects can become quite prominent in the vicinity of degeneracies of many-body energies. We illustrate the idea by considering a case where the intrinsic exchange term -JS^2 brings singlet and triplet many-body states near each other, while an externally tunable Zeeman term then closes the gap between the singlet and the o...
January 16, 2003
We evaluate the ensemble averaged noise in a chaotic quantum dot subject to DC bias and a periodic perturbation of frequency $\Omega$. The noise displays cusps at bias $V_n=n\hbar\Omega/e$ that survive the average, even when the period of the perturbation is far shorter than the dwell time in the dot. These features are sensitive to the phase of the time-dependent scattering amplitudes of electrons to pass through the system.
November 19, 2003
We study non-equilibrium differential conductance and current fluctuations in a single quantum point contact. The two-terminal electrical transport properties -- differential conductance and shot noise -- are measured at 1.5 K as a function of the drain-source voltage and the Schottky split-gate voltage. In differential conductance measurements, conductance plateaus appear at integer multiples of $2e^2/h$ when the drain-source voltage is small, and the plateaus evolve to a fr...