ID: cond-mat/0603769

Hydrodynamic Self-Consistent Field Theory for Inhomogeneous Polymer Melts

March 28, 2006

View on ArXiv
David M. Hall, Turab Lookman, Glenn H. Fredrickson, Sanjoy Banerjee
Condensed Matter
Soft Condensed Matter

We introduce a mesoscale technique for simulating the structure and rheology of block copolymer melts and blends in hydrodynamic flows. The technique couples dynamic self consistent field theory (DSCFT) with continuum hydrodynamics and flow penalization to simulate polymeric fluid flows in channels of arbitrary geometry. We demonstrate the method by studying phase separation of an ABC triblock copolymer melt in a sub-micron channel with neutral wall wetting conditions. We find that surface wetting effects and shear effects compete, producing wall-perpendicular lamellae in the absence of flow, and wall-parallel lamellae in cases where the shear rate exceeds some critical Weissenberg number.

Similar papers 1