March 28, 2006
We introduce a mesoscale technique for simulating the structure and rheology of block copolymer melts and blends in hydrodynamic flows. The technique couples dynamic self consistent field theory (DSCFT) with continuum hydrodynamics and flow penalization to simulate polymeric fluid flows in channels of arbitrary geometry. We demonstrate the method by studying phase separation of an ABC triblock copolymer melt in a sub-micron channel with neutral wall wetting conditions. We find that surface wetting effects and shear effects compete, producing wall-perpendicular lamellae in the absence of flow, and wall-parallel lamellae in cases where the shear rate exceeds some critical Weissenberg number.
Similar papers 1
March 29, 2006
We introduce a mesoscale method for simulating hydrodynamic transport and self assembly of inhomogeneous polymer melts in pressure driven and drag induced flows. This method extends dynamic self consistent field theory (DSCFT) into the hydrodynamic regime where bulk material transport and viscoelastic effects play a significant role. The method combines four distinct components as a single coupled system, including (1) non-equilibrium self consistent field theory describing b...
November 10, 2004
In a preceding paper, we have presented a general lattice formulation of the dynamic self-consistent field (DSCF) theory for inhomogeneous, unentangled homopolymer fluids. Here we apply the DSCF theory to study both transient and steady-state interfacial structure, flow and rheology in a sheared planar channel containing either a one-component melt or a phase-separated, two-component blend. We focus here on the case that the solid-liquid and the liquid-liquid interfaces are p...
April 10, 2012
We present a hybrid numerical method to introduce hydrodynamics in dynamic self-consistent field (SCF) studies of inhomogeneous polymer systems. It solves a set of coupled dynamical equations: The Navier-Stokes equations for the fluid flow, and SCF-based convection-diffusion equations for the evolution of the local monomer compositions. The Navier-Stokes equaitons are simulated by the lattice Boltzmann method and the dynamic self-consistent equations are solved by a finite di...
January 30, 2019
The self-consistent field theory (SCFT) is a powerful framework for the study of the phase behavior and structural properties of many-body systems. In particular, polymeric SCFT has been successfully applied to inhomogeneous polymeric systems such as polymer blends and block copolymer melts. The polymeric SCFT is commonly derived using field-theoretical techniques. Here we provide an alternative derivation of the SCFT equations and SCFT free energy functional using a variatio...
November 10, 2004
We present a lattice formulation of a dynamic self-consistent field (DSCF) theory that is capable of resolving interfacial structure, dynamics and rheology in inhomogeneous, compressible melts and blends of unentangled homopolymer chains. The joint probability distribution of all the Kuhn segments in the fluid, interacting with adjacent segments and walls, is approximated by a product of one-body probabilities for free segments interacting solely with an external potential fi...
March 18, 2021
We introduce a new heterogeneous multi-scale method for the simulation of flows of non-Newtonian fluids in general geometries and present its application to paradigmatic two-dimensional flows of polymeric fluids. Our method combines micro-scale data from non-equilibrium molecular dynamics (NEMD) with macro-scale continuum equations to achieve a data-driven prediction of complex flows. At the continuum level, the method is model-free, since the Cauchy stress tensor is determin...
July 11, 2016
Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling compl...
June 6, 2022
We use dissipative particle dynamics (DPD) simulations to study the effect of shear on domain morphology and kinetics of microphase separating critical diblock copolymer (BCP) bulk melts. The melt is confined within two parallel solid walls at the top and bottom of the simulation box. The shear is induced by allowing the walls to move in a direction with a specific velocity. We explore the following cases: (i) walls are fixed, (ii) only the top wall moves, (iii) both walls mo...
November 11, 2004
We have developed a dynamic self-consistent field theory, without any adjustable parameters, for unentangled polymer blends under shear. Our model accounts for the interaction between polymers, and enables one to compute the evolution of the local rheology, microstructure and the conformations of the polymer chains under shear self-consistently. We use this model to study the interfacial dynamics in sheared polymer blends and make a quantitative comparison between this model ...
December 17, 2021
In this work we consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts. Specifically, we model polymer self-assembly using Self-Consistent Field Theory and derive in a non-parametric setting the sensitivity of the misfit between desired and actual morphologies to arbitrary perturbations in the guiding pattern shape. The obtained sensitivities are used for optimization of the confining pattern s...