ID: cond-mat/0604024

Random Networks Tossing Biased Coins

April 2, 2006

View on ArXiv
F. Bassetti, M. Cosentino Lagomarsino, B. Bassetti, P. Jona
Condensed Matter
Quantitative Biology
Statistical Mechanics
Quantitative Methods

In statistical mechanical investigations on complex networks, it is useful to employ random graphs ensembles as null models, to compare with experimental realizations. Motivated by transcription networks, we present here a simple way to generate an ensemble of random directed graphs with, asymptotically, scale-free outdegree and compact indegree. Entries in each row of the adjacency matrix are set to be zero or one according to the toss of a biased coin, with a chosen probability distribution for the biases. This defines a quick and simple algorithm, which yields good results already for graphs of size n ~ 100. Perhaps more importantly, many of the relevant observables are accessible analytically, improving upon previous estimates for similar graphs.

Similar papers 1

Exchangeable Random Networks

July 24, 2007

90% Match
F. Bassetti, M. Cosentino Lagomarsino, S. MandrĂ¡
Probability
Statistics Theory
Statistics Theory

We introduce and study a class of exchangeable random graph ensembles. They can be used as statistical null models for empirical networks, and as a tool for theoretical investigations. We provide general theorems that carachterize the degree distribution of the ensemble graphs, together with some features that are important for applications, such as subgraph distributions and kernel of the adjacency matrix. These results are used to compare to other models of simple and compl...

Find SimilarView on arXiv
E. S. Roberts, A. C. C. Coolen, T. Schlitt
Quantitative Methods
Disordered Systems and Neura...
Social and Information Netwo...
Physics and Society

We generate new mathematical tools with which to quantify the macroscopic topological structure of large directed networks. This is achieved via a statistical mechanical analysis of constrained maximum entropy ensembles of directed random graphs with prescribed joint distributions for in- and outdegrees and prescribed degree-degree correlation functions. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies and complexitie...

Defining statistical ensembles of random graphs

October 27, 2001

89% Match
A. Krzywicki
Statistical Mechanics
Disordered Systems and Neura...

The problem of defining a statistical ensemble of random graphs with an arbitrary connectivity distribution is discussed. Introducing such an ensemble is a step towards uderstanding the geometry of wide classes of graphs independently of any specific model. This research was triggered by the recent interest in the so-called scale-free networks.

Find SimilarView on arXiv

Tailored graph ensembles as proxies or null models for real networks I: tools for quantifying structure

August 12, 2009

89% Match
A. Annibale, A. C. C. Coolen, L. P. Fernandes, ... , Kleinjung J.
Disordered Systems and Neura...

We study the tailoring of structured random graph ensembles to real networks, with the objective of generating precise and practical mathematical tools for quantifying and comparing network topologies macroscopically, beyond the level of degree statistics. Our family of ensembles can produce graphs with any prescribed degree distribution and any degree-degree correlation function, its control parameters can be calculated fully analytically, and as a result we can calculate (a...

Find SimilarView on arXiv

A surrogate for networks -- How scale-free is my scale-free network?

June 18, 2013

89% Match
Michael Small, Kevin Judd, Thomas Stemler
Physics and Society
Social and Information Netwo...
Adaptation and Self-Organizi...
Data Analysis, Statistics an...

Complex networks are now being studied in a wide range of disciplines across science and technology. In this paper we propose a method by which one can probe the properties of experimentally obtained network data. Rather than just measuring properties of a network inferred from data, we aim to ask how typical is that network? What properties of the observed network are typical of all such scale free networks, and which are peculiar? To do this we propose a series of methods t...

Find SimilarView on arXiv

Realistic network growth using only local information: From random to scale-free and beyond

August 31, 2006

89% Match
David M. D. Smith, Chiu Fan Lee, Neil F. Johnson
Statistical Mechanics
Disordered Systems and Neura...
Physics and Society

We introduce a simple one-parameter network growth algorithm which is able to reproduce a wide variety of realistic network structures but without having to invoke any global information about node degrees such as preferential-attachment probabilities. Scale-free networks arise at the transition point between quasi-random and quasi-ordered networks. We provide a detailed formalism which accurately describes the entire network range, including this critical point. Our formalis...

Find SimilarView on arXiv

Degree distribution of complex networks from statistical mechanics principles

June 14, 2006

88% Match
Ginestra Bianconi
Statistical Mechanics
Disordered Systems and Neura...

In this paper we describe the emergence of scale-free degree distributions from statistical mechanics principles. We define an energy associated to a degree sequence as the logarithm of the number of indistinguishable simple networks it is possible to draw given the degree sequence. Keeping fixed the total number of nodes and links, we show that the energy of scale-free distribution is much higher than the energy associated to the degree sequence of regular random graphs. Thi...

Find SimilarView on arXiv

Random Networks with Tunable Degree Distribution and Clustering

May 17, 2004

88% Match
Erik Volz
Statistical Mechanics
Disordered Systems and Neura...

We present an algorithm for generating random networks with arbitrary degree distribution and Clustering (frequency of triadic closure). We use this algorithm to generate networks with exponential, power law, and poisson degree distributions with variable levels of clustering. Such networks may be used as models of social networks and as a testable null hypothesis about network structure. Finally, we explore the effects of clustering on the point of the phase transition where...

Find SimilarView on arXiv

Bipartite Graphs as Models of Complex Networks

July 4, 2003

88% Match
Jean-Loup Guillaume, Matthieu Latapy
Statistical Mechanics

It appeared recently that the classical random graph model used to represent real-world complex networks does not capture their main properties. Since then, various attempts have been made to provide accurate models. We study here a model which achieves the following challenges: it produces graphs which have the three main wanted properties (clustering, degree distribution, average distance), it is based on some real-world observations, and it is sufficiently simple to make i...

Find SimilarView on arXiv

Constructing and Sampling Graphs with a Prescribed Joint Degree Distribution

March 24, 2011

88% Match
Isabelle Stanton, Ali Pinar
Data Structures and Algorith...

One of the most influential recent results in network analysis is that many natural networks exhibit a power-law or log-normal degree distribution. This has inspired numerous generative models that match this property. However, more recent work has shown that while these generative models do have the right degree distribution, they are not good models for real life networks due to their differences on other important metrics like conductance. We believe this is, in part, beca...

Find SimilarView on arXiv