April 2, 2006
Similar papers 4
October 17, 2007
Random networks are widely used to model complex networks and research their properties. In order to get a good approximation of complex networks encountered in various disciplines of science, the ability to tune various statistical properties of random networks is very important. In this manuscript we present an algorithm which is able to construct arbitrarily degree-degree correlated networks with adjustable degree-dependent clustering. We verify the algorithm by using empi...
May 25, 2004
We study the family of network models derived by requiring the expected properties of a graph ensemble to match a given set of measurements of a real-world network, while maximizing the entropy of the ensemble. Models of this type play the same role in the study of networks as is played by the Boltzmann distribution in classical statistical mechanics; they offer the best prediction of network properties subject to the constraints imposed by a given set of observations. We giv...
February 15, 2012
Markov chains are a convenient means of generating realizations of networks, since they require little more than a procedure for rewiring edges. If a rewiring procedure exists for generating new graphs with specified statistical properties, then a Markov chain sampler can generate an ensemble of graphs with prescribed characteristics. However, successive graphs in a Markov chain cannot be used when one desires independent draws from the distribution of graphs; the realization...
January 30, 2004
In this article we give an in depth overview of the recent advances in the field of equilibrium networks. After outlining this topic, we provide a novel way of defining equilibrium graph (network) ensembles. We illustrate this concept on the classical random graph model and then survey a large variety of recently studied network models. Next, we analyze the structural properties of the graphs in these ensembles in terms of both local and global characteristics, such as degree...
June 24, 2002
1. Basic constructions. 2. Equilibrium and nonequilibrium networks. 3. Equilibrium uncorrelated networks. 4. Nonequilibrium nongrowing scale-free nets. 5. Types of correlations. 6. When pair correlations are important. 7. When loops are important. 8. Pair degree-degree correlations in growing networks. 9. How to construct an equilibrium net with given degree-degree correlations. 10. How to construct a growing scale-free net with a given clustering (towards a real-space renorm...
February 15, 2010
Uniform sampling from graphical realizations of a given degree sequence is a fundamental component in simulation-based measurements of network observables, with applications ranging from epidemics, through social networks to Internet modeling. Existing graph sampling methods are either link-swap based (Markov-Chain Monte Carlo algorithms) or stub-matching based (the Configuration Model). Both types are ill-controlled, with typically unknown mixing times for link-swap methods ...
December 1, 2003
Random graphs with prescribed degree sequences have been widely used as a model of complex networks. Comparing an observed network to an ensemble of such graphs allows one to detect deviations from randomness in network properties. Here we briefly review two existing methods for the generation of random graphs with arbitrary degree sequences, which we call the ``switching'' and ``matching'' methods, and present a new method based on the ``go with the winners'' Monte Carlo met...
November 25, 2013
Because of the huge number of graphs possible even with a small number of nodes, inference on network structure is known to be a challenging problem. Generating large random directed graphs with prescribed probabilities of occurrences of some meaningful patterns (motifs) is also difficult. We show how to generate such random graphs according to a formal probabilistic representation, using fast Markov chain Monte Carlo methods to sample them. As an illustration, we generate re...
July 13, 2000
Recent work on the structure of social networks and the internet has focussed attention on graphs with distributions of vertex degree that are significantly different from the Poisson degree distributions that have been widely studied in the past. In this paper we develop in detail the theory of random graphs with arbitrary degree distributions. In addition to simple undirected, unipartite graphs, we examine the properties of directed and bipartite graphs. Among other results...
July 8, 2016
Statistical ensembles of networks, i.e., probability spaces of all networks that are consistent with given aggregate statistics, have become instrumental in the analysis of complex networks. Their numerical and analytical study provides the foundation for the inference of topological patterns, the definition of network-analytic measures, as well as for model selection and statistical hypothesis testing. Contributing to the foundation of these data analysis techniques, in this...