April 4, 2006
Similar papers 2
October 28, 2021
The transport coefficients of a dilute gas of inelastic hard spheres immersed in a molecular gas are determined. We assume that the number density of the granular gas is much smaller than that of the surrounding molecular gas, so that the latter is not affected by the presence of solid particles. In this situation, the molecular gas may be treated as a thermostat (or bath) of elastic hard spheres at a fixed temperature. This system (granular gas thermostated by a bath of elas...
September 29, 2003
Diffusion of impurities in a granular gas undergoing homogeneous cooling state is studied. The results are obtained by solving the Boltzmann--Lorentz equation by means of the Chapman--Enskog method. In the first order in the density gradient of impurities, the diffusion coefficient $D$ is determined as the solution of a linear integral equation which is approximately solved by making an expansion in Sonine polynomials. In this paper, we evaluate $D$ up to the second order in ...
October 29, 2019
The Navier--Stokes transport coefficients of multicomponent granular suspensions at moderate densities are obtained in the context of the (inelastic) Enskog kinetic theory. The suspension is modeled as an ensemble of solid particles where the influence of the interstitial gas on grains is via a viscous drag force plus a stochastic Langevin-like term defined in terms of a background temperature. In the absence of spatial gradients, it is shown first that the system reaches a h...
May 24, 2014
The Boltzmann equation for inelastic and rough hard spheres is considered as a model of a dilute granular gas. In this model, the collisions are characterized by constant coefficients of normal and tangential restitution and hence the translational and rotational degrees of freedom are coupled. A normal solution to the Boltzmann equation is obtained by means of the Chapman-Enskog method for states near the homogeneous cooling state. The analysis is carried out to first order ...
February 22, 2012
An intriguing phenomenon displayed by granular flows and predicted by kinetic-theory-based models is the instability known as particle "clustering," which refers to the tendency of dissipative grains to form transient, loose regions of relatively high concentration. In this work, we assess a modified-Sonine approximation recently proposed [Garz\'o et al., Physica A 376, 94 (2007)] for a granular gas via an examination of system stability. In particular, we determine the criti...
March 3, 1998
We study the single particle velocity distribution for a granular fluid of inelastic hard spheres or disks, using the Enskog-Boltzmann equation, both for the homogeneous cooling of a freely evolving system and for the stationary state of a uniformly heated system, and explicitly calculate the fourth cumulant of the distribution. For the undriven case, our result agrees well with computer simulations of Brey et al. \cite{brey}. Corrections due to non-Gaussian behavior on cooli...
September 2, 2013
The transport coefficients of a granular binary mixture driven by a stochastic bath with friction are determined from the inelastic Boltzmann kinetic equation. A normal solution is obtained via the Chapman-Enskog method for states near homogeneous steady states. The mass, momentum, and heat fluxes are determined to first order in the spatial gradients of the hydrodynamic fields, and the associated transport coefficients are identified. They are given in terms of the solutions...
August 14, 2012
A peculiarity of the hydrodynamic Navier-Stokes equations for a granular gas is the modification of the Fourier law, with the presence of an additional contribution to the heat flux that is proportional to the density gradient. Consequently, the constitutive relation involves, in the case of a one-component granular gas, two transport coefficients: the usual (thermal) heat conductivity and a diffusive heat conductivity. A very simple physical interpretation of this effect, in...
December 17, 2008
Transport coefficients associated with the mass flux of impurities immersed in a moderately dense granular gas of hard disks or spheres described by the inelastic Enskog equation are obtained by means of the Chapman-Enskog expansion. The transport coefficients are determined as the solutions of a set of coupled linear integral equations recently derived for polydisperse granular mixtures [V. Garz\'o, J. W. Dufty and C. M. Hrenya, Phys. Rev. E {\bf 76}, 031304 (2007)]. With th...
September 14, 2022
We study a dilute granular gas immersed in a thermal bath made of smaller particles with masses not much smaller than the granular ones in this work. Granular particles are assumed to have inelastic and hard interactions, losing energy in collisions as accounted by a constant coefficient of normal restitution. The interaction with the thermal bath is modeled by a nonlinear drag force plus a white-noise stochastic force. The kinetic theory for this system is described by an En...