May 29, 2006
Similar papers 4
February 11, 2015
We introduce a new mesoscopic model for nematic liquid crystals (LCs). We extend the particle-based stochastic rotation dynamics method, which reproduces the Navier-Stokes equation, to anisotropic fluids by including a simplified Ericksen-Leslie formulation of nematodynamics. We verify the applicability of this hybrid model by studying the equilibrium isotropic-nematic phase transition and nonequilibrium problems, such as the dynamics of topological defects, and the rheology ...
October 4, 2021
Understanding the relaxation dynamics of colloidal suspensions is crucial to identify the elements that influence the mobility of their constituents, assess their macroscopic response across the relevant time and length scales, and thus disclose the fundamentals underpinning their exploitation in formulation engineering. In this work, we specifically assess the impact of long-ranged ordering on the relaxation dynamics of suspensions of soft-repulsive rod-like particles, which...
March 31, 2003
By computer simulations of systems of ellipsoids, we study the influence of the isotropic/nematic phase transition on the direct correlation functions (DCF) in anisotropic fluids. The DCF is determined from the pair distribution function by solving the full Ornstein-Zernike equation, without any approximations. Using a suitable molecular-fixed reference frame, we can distinguish between two qualitatively different contributions to the DCF: One which preserves rotational invar...
April 10, 2006
The structure of a molecular liquid, in both the nematic liquid crystalline and isotropic phases, around a cylindrical macroparticle, is studied using density functional theory. In the nematic phase the structure of the fluid is highly anisotropic with respect to the director, in agreement with results from simulation and phenomenological theories. On going into the isotropic phase the structure becomes rotationally invariant around the macroparticle with an oriented layer at...
March 2, 2016
Active (i.e., self-propelled or swimming) particles moving through an isotropic fluid exhibit conventional diffusive behavior. We report anomalous diffusion of an active particle moving in an anisotropic, nematic background. Whilst the translational motion parallel to the nematic director shows ballistic behavior, the long-time transverse motion is super-diffusive, with an anomalous scaling $\propto t \ln t$ of the mean squared displacement with time $t$. This behavior is pre...
February 27, 2020
Nematic liquid crystals exhibit configurations in which the underlying ordering changes markedly on macroscopic length scales. Such structures include topological defects in the nematic phase and tactoids within nematic-isotropic coexistence. We discuss a computational study of inhomogeneous configurations that is based on a field theory extension of the Maier-Saupe molecular model of a uniaxial, nematic liquid crystal. A tensor order parameter is defined as the second moment...
March 9, 2023
We investigate experimentally the dynamic phase transition of a two-dimensional active nematic layer interfaced with a passive liquid crystal. Under a temperature ramp that leads to the transition of the passive liquid into a highly anisotropic lamellar smectic-A phase, and in the presence of a magnetic field, the coupled active nematic reorganizes its flow and orientational patterns from the turbulent into a quasi-laminar regime aligned perpendicularly to the field. Remarkab...
July 3, 2000
Surface-induced profiles of both nematic and smectic order parameters in a nematic liquid crystal, ranging from an orienting substrate to "infinity", were evaluated numerically on base of an extended Landau theory. In order to obtain a smooth behavior of the solutions at "infinity" a boundary energy functional was derived by linearizing the Landau energy around its equilibrium solutions. We find that the intrinsic wave number of the smectic structure, which plays the role of ...
July 25, 2017
We introduce a lattice model for active nematic composed of self-propelled apolar particles,study its different ordering states in the density-temperature parameter space, and compare with the corresponding equilibrium model. The active particles interact with their neighbours within the framework of the Lebwohl-Lasher model, and move anisotropically along their orientation to an unoccupied nearest neighbour lattice site. An interplay of the activity, thermal fluctuations and...
March 27, 2019
Multi-particle collision dynamics is an appealing numerical technique aiming at simulating fluids at the mesoscopic scale. It considers molecular details in a coarse-grained fashion and reproduces hydrodynamic phenomena. Here, the implementation of multi-particle collision dynamics for isotropic fluids is analysed under the so-called Andersen-thermostatted scheme, a particular algorithm for systems in the canonical ensemble. This method gives rise to hydrodynamic fluctuations...