July 28, 2006
Similar papers 2
April 9, 2008
We present periodic Density Functional Theory calculations of the electronic properties of molecular junctions formed by amine-, and thiol-terminated alkane chains attached to two metal (Au, Ag) electrodes. Based on extensive analysis that includes molecular monolayers of varying densities, we establish a relationship between the alignment of the molecular energy levels and the interface dipoles, which shows that the band alignment (BA) in the limit of long, isolated chains i...
October 6, 2014
Recent experiments have shown that transport properties of molecular-scale devices can be reversibly altered by the surrounding solvent. Here, we use a combination of first-principles calculations and experiment to explain this change in transport properties through a shift in the local electrostatic potential at the junction caused by nearby conducting and solvent molecules chemically bound to the electrodes. This effect is found to alter the conductance of bipyridine - gold...
September 9, 2021
Understanding the formation of metal-molecule contact at the microscopic level is the key towards controlling and manipulating atomic scale devices. Employing two isomers of bipyridine, $4, 4^\prime$ bipyridine and $2, 2^\prime$ bipyridine between gold electrodes, here, we investigate the formation of metal-molecule bond by studying charge transport through single molecular junctions using a mechanically controlled break junction technique at room temperature. While both mole...
March 16, 2007
We measure the low bias conductance of a series of substituted benzene diamine molecules while breaking a gold point contact in a solution of the molecules. Transport through these substituted benzenes is by means of nonresonant tunneling or superexchange, with the molecular junction conductance depending on the alignment of the metal Fermi level to the closest molecular level. Electron-donating substituents, which drive the occupied molecular orbitals up, increase the juncti...
June 21, 2010
Using photoemission spectroscopy, we determine the relationship between electronic energy level alignment at a metal-molecule interface and single-molecule junction transport data. We measure the position of the highest occupied molecular orbital (HOMO) relative to the Au metal Fermi level for three 1,4-benzenediamine derivatives on Au(111) and Au(110) with ultraviolet and resonant x-ray photoemission spectroscopy. We compare these results to scanning tunnelling microscope ba...
February 27, 2007
Recent experimental realization [J. Am. Chem. Soc., 127 (2005) 7328] of various dithiocarbamate self assembly on gold surface opens the possibility for use of dithiocarbamate linkers to anchor molecular wires to gold electrodes. In this paper, we explore this hypothesis computationally. We computed the electron transport properties of 4,4'-bipyridine (BP), 4,4'-bipyridinium-1,1'-bis(carbodithioate) (BPBC), 4-(4'-pyridyl)-peridium-1-carbodithioate (BPC) molecule junctions ...
March 17, 2014
The characteristics of molecular electronic devices are critically determined by metal-organic interfaces, which influence the arrangement of the orbital levels that participate in charge transport. Studies on self-assembled monolayers (SAMs) show (molecule-dependent) level shifts as well as transport-gap renormalization, suggesting that polarization effects in the metal substrate play a key role in the level alignment with respect to the metal's Fermi energy. Here, we provid...
October 3, 2014
It is often assumed that the hydrogen atoms in the thiol groups of a benzene-1,4-dithiol dissociate when Au-benzene-1,4-dithiol-Au junctions are formed. We demonstrate, by stability and transport properties calculations, that this assumption can not be made. We show that the dissociative adsorption of methanethiol and benzene-1,4-dithiol molecules on a flat Au(111) surface is energetically unfavorable and that the activation barrier for this reaction is as high as 1 eV. For t...
April 14, 2022
Using first-principles calculations based on density functional theory combined with the non-equilibrium Green's function approach, the transport behaviors of a single-molecule junction formed by benzenedithiol connected to gold electrodes are investigated. The breakdown voltage for the model of benzenedithiol plus gold electrodes is 0.7 V, which is close to the experimental value. A linear response between the conductance and temperature (known as linear temperature drift) i...
July 27, 2009
We report theoretical investigations on the role of interfacial bonding mechanism and its resulting structures to quantum transport in molecular wires. Two bonding mechanisms for the Au-S bond in an Au(111)/1,4-benzenedithiol(BDT)/Au(111) junction were identified by ab initio calculation, confirmed by a recent experiment, which, we showed, critically control charge conduction. It was found, for Au/ BDT/Au junctions, the hydrogen atom, bound by a dative bond to the Sulfur, is ...