August 16, 2006
Similar papers 2
June 16, 2005
We computationally study jammed disordered hard-sphere packings as large as a million particles. We show that the packings are saturated and hyperuniform, i.e., that local density fluctuations grow only as a logarithmically-augmented surface area rather than the volume of the window. The structure factor shows an unusual non-analytic linear dependence near the origin, $S(k)\sim|k|$. In addition to exponentially damped oscillations seen in liquids, this implies a weak power-la...
February 14, 2018
Packing spheres efficiently in large dimension $d$ is a particularly difficult optimization problem. In this paper we add an isotropic interaction potential to the pure hard-core repulsion, and show that one can tune it in order to maximize a lower bound on packing density. Our results suggest that exponentially many (in the number of particles) distinct disordered sphere packings can be effectively constructed by this method, up to a packing fraction close to $7\, d\, 2^{-d}...
October 5, 2010
At low volume fraction, disordered arrangements of frictionless spheres are found in un--jammed states unable to support applied stresses, while at high volume fraction they are found in jammed states with mechanical strength. Here we show, focusing on the hard sphere zero pressure limit, that the transition between un-jammed and jammed states does not occur at a single value of the volume fraction, but in a whole volume fraction range. This result is obtained via the direct ...
January 4, 2010
Dense random packings of hard particles are useful models of granular media and are closely related to the structure of nonequilibrium low-temperature amorphous phases of matter. Most work has been done for random jammed packings of spheres, and it is only recently that corresponding packings of nonspherical particles (e.g., ellipsoids) have received attention. Here we report a study of the maximally random jammed (MRJ) packings of binary superdisks and monodispersed superbal...
August 26, 2004
We study the approach to jamming in hard-sphere packings, and, in particular, the pair correlation function $g_{2}(r)$ around contact, both theoretically and computationally. Our computational data unambiguously separates the narrowing delta-function contribution to $g_{2}$ due to emerging interparticle contacts from the background contribution due to near contacts. The data also shows with unprecedented accuracy that disordered hard-sphere packings are strictly isostatic, i....
January 23, 2023
We show that an analogy between crowding in fluid and jammed phases of hard spheres captures the density dependence of the kissing number for a family of numerically generated jammed states. We extend this analogy to jams of mixtures of hard spheres in $d=3$ dimensions, and thus obtain an estimate of the random close packing (RCP) volume fraction, $\phi_{\textrm{RCP}}$, as a function of size polydispersity. We first consider mixtures of particle sizes with discrete distributi...
May 29, 2017
We numerically study the jamming transition of frictionless polydisperse spheres in three dimensions. We use an efficient thermalisation algorithm for the equilibrium hard sphere fluid and generate amorphous jammed packings over a range of critical jamming densities that is about three times broader than in previous studies. This allows us to reexamine a wide range of structural properties characterizing the jamming transition. Both isostaticity and the critical behavior of t...
September 7, 2021
Based on results from the physics and mathematics literature which suggest a series of clearly defined conjectures, we formulate three simple scenarios for the fate of hard sphere crystallization in high dimension: (A) crystallization is impeded and the glass phase constitutes the densest packing, (B) crystallization from the liquid is possible, but takes place much beyond the dynamical glass transition and is thus dynamically implausible, or (C) crystallization is possible a...
September 12, 2013
We study, via the replica method of disordered systems, the packing problem of hard-spheres with a square-well attractive potential when the space dimensionality, d, becomes infinitely large. The phase diagram of the system exhibits reentrancy of the liquid-glass transition line, two distinct glass states and a glass-to-glass transition, much similar to what has been previously obtained by Mode-Coupling Theory, numerical simulations and experiments. The presence of the phase ...
February 20, 2014
Random sequential addition (RSA) time-dependent packing process, in which congruent hard hyperspheres are randomly and sequentially placed into a system without interparticle overlap, is a useful packing model to study disorder in high dimensions. Of particular interest is the infinite-time {\it saturation} limit in which the available space for another sphere tends to zero. However, the associated saturation density has been determined in all previous investigations by extra...