August 17, 2006
Similar papers 4
December 4, 2020
The local number variance associated with a spherical sampling window of radius $R$ enables a classification of many-particle systems in $d$-dimensional Euclidean space according to the degree to which large-scale density fluctuations are suppressed, resulting in a demarcation between hyperuniform and nonhyperuniform phyla. To better characterize density fluctuations, we carry out an extensive study of higher-order moments, including the skewness $\gamma_1(R)$, excess kurtosi...
February 25, 2012
Motivated by the search for best lattice sphere packings in Euclidean spaces of large dimensions we study randomly generated perfect lattices in moderately large dimensions (up to d=19 included). Perfect lattices are relevant in the solution of the problem of lattice sphere packing, because the best lattice packing is a perfect lattice and because they can be generated easily by an algorithm. Their number however grows super-exponentially with the dimension so to get an idea ...
March 22, 2018
Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation" limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational ...
January 6, 2011
We show for the first time that collectively jammed disordered packings of three-dimensional monodisperse frictionless hard spheres can be produced and tuned using a novel numerical protocol with packing density $\phi$ as low as 0.6. This is well below the value of 0.64 associated with the maximally random jammed state and entirely unrelated to the ill-defined ``random loose packing'' state density. Specifically, collectively jammed packings are generated with a very narrow d...
July 10, 2024
The probability of finding a spherical "hole" of a given radius $r$ contains crucial structural information about many-body systems. Such hole statistics, including the void conditional nearest-neighbor probability functions $G_V(r)$, have been well studied for hard-sphere fluids in $d$-dimensional Euclidean space $\mathbb{R}^d$. However, little is known about these functions for hard-sphere crystals for values of $r$ beyond the hard-sphere diameter, as large holes are extrem...
April 20, 2011
Hyperuniform many-particle distributions possess a local number variance that grows more slowly than the volume of an observation window, implying that the local density is effectively homogeneous beyond a few characteristic length scales. Previous work on maximally random strictly jammed sphere packings in three dimensions has shown that these systems are hyperuniform and possess unusual quasi-long-range pair correlations, resulting in anomalous logarithmic growth in the num...
March 11, 2013
Random packing of spheres inside fractal collectors of dimension 2 < d < 3 is studied numerically using Random Sequential Adsorption (RSA) algorithm. The paper focuses mainly on the measurement of random packing saturation limit. Additionally, scaling properties of density autocorrelations in the obtained packing are analyzed. The RSA kinetics coefficients are also measured. Obtained results allow to test phenomenological relation between random packing saturation density and...
July 4, 2019
Irreversible adsorption of objects of different shapes and sizes on Euclidean, fractal and random lattices is studied. The adsorption process is modeled by using random sequential adsorption (RSA) algorithm. Objects are adsorbed on one-, two-, and three-dimensional Euclidean lattices, on Sierpinski carpets having dimension $d$ between 1 and 2, and on Erdos-Renyi random graphs. The number of sites is $M=L^d$ for Euclidean and fractal lattices, where $L$ is a characteristic len...
January 25, 2022
The method, proposed in \cite{Za22} to derive the densest packing fraction of random disc and sphere packings, is shown to yield in two dimensions too high a value that (i) violates the very assumption underlying the method and (ii) corresponds to a high degree of structural order. The claim that the obtained value is supported by a specific simulation is shown to be unfounded. One source of the error is pointed out.
March 12, 2002
We consider growing spheres seeded by random injection in time and space. Growth stops when two spheres meet leading eventually to a jammed state. We study the statistics of growth limited by packing theoretically in d dimensions and via simulation in d=2, 3, and 4. We show how a broad class of such models exhibit distributions of sphere radii with a universal exponent. We construct a scaling theory that relates the fractal structure of these models to the decay of their pore...