September 2, 2006
Similar papers 2
December 15, 2017
The leaves of many plants are superhydrophobic, a property that may have evolved to clean the leaves by encouraging water droplets to bead up and roll off. Superhydrophobic surfaces can also exhibit reduced friction and liquids flowing over such surfaces have been found to slip in apparent violations of the classical no-slip boundary condition. Here we introduce slip into a model for rolling droplets on superhydrophobic surfaces and investigate under what conditions slip migh...
October 2, 2006
Substantial experimental, theoretical, as well as numerical effort has been invested to understand the effect of boundary slippage in microfluidic devices. However, even though such devices are becoming increasingly important in scientific, medical, and industrial applications, a satisfactory understanding of the phenomenon is still lacking. This is due to the extremely precise experiments needed to study the problem and the large number of tunable parameters in such systems....
July 7, 2010
We provide some general theoretical results to guide the optimization of transverse hydrodynamic phenomena in superhydrophobic channels. Our focus is on the canonical micro- and nanofluidic geometry of a parallel-plate channel with an arbitrary two-component (low-slip and high-slip) coarse texture, varying on scales larger than the channel thickness. By analyzing rigorous bounds on the permeability, over all possible patterns, we optimize the area fractions, slip lengths, geo...
March 16, 2011
We give a general theoretical description of electro-osmotic flow at striped super-hydrophobic surfaces in a thin double layer limit, and derive a relation between the electro-osmotic mobility and hydrodynamic slip-length tensors. Our analysis demonstrates that electro-osmotic flow shows a very rich behavior controlled by slip length and charge at the gas sectors. In case of uncharged liquid-gas interface, the flow is the same or inhibited relative to flow in homogeneous chan...
December 8, 2012
Anisotropic super-hydrophobic surfaces have the potential to greatly reduce drag and enhance mixing phenomena in microfluidic devices. Recent work has focused mostly on cases of super-hydrophobic stripes. Here, we analyze a relevant situation of cosine variation of the local slip length. We derive approximate formulae for maximal (longitudinal) and minimal (transverse) directional effective slip lengths that are in good agreement with the exact numerical solution and lattice-...
October 8, 2002
t has been shown that the flow of a simple liquid over a solid surface can violate the so-called no-slip boundary condition. We investigate the flow of polar liquids, water and glycerol, on a hydrophilic Pyrex surface and a hydrophobic surface made of a Self-Assembled Monolayer of OTS (octadecyltrichlorosilane) on Pyrex. We use a Dynamic Surface Force Apparatus (DSFA) which allows one to study the flow of a liquid film confined between two surfaces with a nanometer resolution...
April 8, 2019
Contrasting with its sluggish behavior on standard solids, water is extremely mobile on superhydrophobic materials, as shown for instance by the continuous acceleration of drops on tilted water-repellent leaves. For much longer substrates, however, drops reach a terminal velocity that results from a balance between weight and friction, allowing us to question the nature of this friction. We report that the relationship between force and terminal velocity is non-linear. This i...
September 23, 2010
We investigate the dynamics of micron-scale drops pushed across a hydrophobic or superhydrophobic surface. The velocity profile across the drop varies from quadratic to linear with increasing height, indicating a crossover from a sliding to a rolling motion. We identify a mesoscopic slip capillary number which depends only on the motion of the contact line and the shape of the drop, and show that the angular velocity of the rolling increases with increasing viscosity. For dro...
November 27, 2015
Super hydrophobic surfaces have been the focus of research in the recent years.One of the reasons for this is the self cleaning property of these surfaces which emerges from the ability of the droplets to roll freely over them.However majority of the studies available in literature are on the static wetting behavior of liquid droplets on such surfaces and the physics of the motion of droplets has not been studied exhaustively either theoretically or experimentally.In the pres...
July 19, 2006
Hydrodynamic behavior at the vicinity of a confining wall is closely related to the friction properties of the liquid/solid interface. Here we consider, using Molecular Dynamics simulations, the electric contribution to friction for charged surfaces, and the induced modification of the hydrodynamic boundary condition at the confining boundary. The consequences of liquid slippage for electrokinetic phenomena, through the coupling between hydrodynamics and electrostatics within...