September 12, 2006
We report manifestly nonlinear dependence of quantum dot nuclear spin polarization on applied magnetic fields. Resonant absorption and emission of circularly polarized radiation pumps the resident quantum dot electron spin, which in turn leads to nuclear spin polarization due to hyperfine interaction. We observe that the resulting Overhauser field exhibits hysteresis as a function of the external magnetic field. This hysteresis is a consequence of the feedback of the Overhauser field on the nuclear spin cooling rate. A semi-classical model describing the coupled nuclear and electron spin dynamics successfully explains the observed hysteresis but leaves open questions for the low field behaviour of the nuclear spin polarization.
Similar papers 1
March 14, 2007
We study the spin dynamics in charged quantum dots in the situation where the resident electron is coupled to only about 200 nuclear spins and where the electron spin splitting induced by the Overhauser field does not exceed markedly the spectral broadening. The formation of a dynamical nuclear polarization as well as its subsequent decay by the dipole-dipole interaction is directly resolved in time. Because not limited by intrinsic nonlinearities, almost complete nuclear pol...
September 10, 2007
We report the hysteresis of optically-pumped nuclear spin polarization and the degree of circular polarization of photoluminescence on the excitation power and electron spin polarization in single InAlAs quantum dots. By increasing (or decreasing) the excitation power at a particular excitation polarization, an abrupt rise (or drop) and a clear hysteretic behavior were observed in the Overhauser shift of the photoluminescence of the exciton and exciton complexes from the same...
March 27, 2003
An all-optical scheme to polarize nuclear spins in a single quantum dot is analyzed. The hyperfine interaction with randomly oriented nuclear spins presents a fundamental limit for electron spin coherence in a quantum dot; by cooling the nuclear spins, this decoherence mechanism could be suppressed. The proposed scheme is inspired by laser cooling methods of atomic physics and implements a "controlled Overhauser effect" in a zero-dimensional structure.
October 4, 2007
We propose a new mechanism for polarizing nuclear spins in quantum dots, based on periodic modulation of the hyperfine coupling by electric driving at the electron spin resonance frequency. Dynamical nuclear polarization results from resonant excitation rather than hyperfine relaxation mediated by a thermal bath, and thus is not subject to Overhauser-like detailed balance constraints. This allows polarization in the direction opposite to that expected from the Overhauser effe...
March 4, 2013
We investigate the dynamic nuclear polarization process by frequently injecting polarized electron spins into a quantum dot. Due to the suppression of the direct dipolar and indirect electron-mediated nuclear spin interactions, by the frequently injected electron spins, the analytical predictions under the independent spin approximation agree well with quantum numerical simulations. Our results show that the acquired nuclear polarization is highly inhomogeneous, proportional ...
January 11, 2010
Transport through spin-blockaded quantum dots provides a means for electrical control and detection of nuclear spin dynamics in the host material. Although such experiments have become increasingly popular in recent years, interpretation of their results in terms of the underlying nuclear spin dynamics remains challenging. Here we point out a fundamental process in which nuclear spin dynamics can be driven by electron shot noise; fast electric current fluctuations generate mu...
July 3, 2007
We investigate in micro-photoluminescence experiments the dynamical nuclear polarization in individual InGaAs quantum dots. Experiments carried out in an applied magnetic field of 2T show that the nuclear polarization achieved through the optical pumping of electron spins is increasing with the sample temperature between 2K and 55K, reaching a maximum of about 50%. Analysing the dependence of the Overhauser shift on the spin polarization of the optically injected electron as ...
April 6, 2011
We measure the dynamics of nuclear spins in a self-assembled quantum dot at a magnetic field of 5 Tesla and identify two distinct mechanisms responsible for the decay of the Overhauser field. We attribute a temperature-independent decay which lasts ~100 seconds to intra-dot diffusion induced by hyperfine-mediated indirect nuclear spin interaction. In addition, we observe a gate-voltage and temperature dependent decay stemming from co-tunneling mediated nuclear spin flip proce...
May 15, 2007
We propose to use the spin-blockade regime in double quantum dots to reduce nuclear spin polarization fluctuations in analogy with optical Doppler cooling. The Overhauser shift brings electron levels in and out of resonance, creating feedback to suppress fluctuations. Coupling to the disordered nuclear spin background is a major source of noise and dephasing in electron spin measurements in such systems. Estimates indicate that a better than 10-fold reduction of fluctuations ...
December 13, 2005
We demonstrate dynamical nuclear spin polarization in the absence of an external magnetic field, by resonant circularly polarized optical excitation of a single electron or hole charged quantum dot. Optical pumping of the electron spin induces an effective inhomogeneous magnetic (Knight) field that determines the direction along which nuclear spins could polarize and enables nuclear-spin cooling by suppressing depolarization induced by nuclear dipole-dipole interactions. Our ...