September 21, 2006
Similar papers 3
February 28, 2006
We study computationally the electron transport properties of dithiocarboxylate terminated molecular junctions. Transport properties are computed self-consistently within density functional theory and nonequilibrium Green's functions formalism. A microscopic origin of the experimentally observed current amplification by dithiocarboxylate anchoring groups is established. For the 4,4'-biphenyl bis(dithiocarboxylate) junction, we find that the interaction of the lowest unoccupie...
September 22, 2007
We study theoretically the length dependence of both conductance and thermopower in metal-molecule-metal junctions made up of dithiolated oligophenylenes contacted to gold electrodes. We find that while the conductance decays exponentially with increasing molecular length, the thermopower increases linearly as suggested by recent experiments. We also analyze how these transport properties can be tuned with methyl side groups. Our results can be explained by considering the le...
September 13, 2022
With the objective to understand microscopic principles governing thermal energy flow in nanojunctions, we study phononic heat transport through metal-molecule-metal junctions using classical molecular dynamics (MD) simulations. Considering a single-molecule gold-alkanedithiol-gold junction, we first focus on aspects of method development and compare two techniques for calculating thermal conductance: (i) The Reverse Nonequilibrium MD (RNEMD) method, where heat is inputted an...
July 27, 2009
We report theoretical investigations on the role of interfacial bonding mechanism and its resulting structures to quantum transport in molecular wires. Two bonding mechanisms for the Au-S bond in an Au(111)/1,4-benzenedithiol(BDT)/Au(111) junction were identified by ab initio calculation, confirmed by a recent experiment, which, we showed, critically control charge conduction. It was found, for Au/ BDT/Au junctions, the hydrogen atom, bound by a dative bond to the Sulfur, is ...
February 27, 2007
Recent experimental realization [J. Am. Chem. Soc., 127 (2005) 7328] of various dithiocarbamate self assembly on gold surface opens the possibility for use of dithiocarbamate linkers to anchor molecular wires to gold electrodes. In this paper, we explore this hypothesis computationally. We computed the electron transport properties of 4,4'-bipyridine (BP), 4,4'-bipyridinium-1,1'-bis(carbodithioate) (BPBC), 4-(4'-pyridyl)-peridium-1-carbodithioate (BPC) molecule junctions ...
November 30, 2012
Using self-energy-corrected density functional theory (DFT) and a coherent scattering-state approach, we explain current-voltage (IV) measurements of four pyridine-Au and amine-Au linked molecular junctions with quantitative accuracy. Parameter-free many-electron self-energy corrections to DFT Kohn-Sham eigenvalues are demonstrated to lead to excellent agreement with experiments at finite bias, improving upon order-of-magnitude errors in currents obtained with standard DFT ap...
April 2, 1999
Molecules of bisthiolterthiophene have been adsorbed on the two facing gold electrodes of a mechanically controllable break junction in order to form metal-molecule(s)-metal junctions. Current-voltage (I-V) characteristics have been recorded at room temperature. Zero bias conductances were measured in the 10-100 nS range and different kinds of non-linear I-V curves with step-like features were reproducibly obtained. Switching between different kinds of I-V curves could be ind...
February 21, 2007
Amine terminated molecules show well behaved conductance in the scanning tunneling microscope break-junction experimental measurements. We performed density functional theory based electron transport calculations to explain the nature of this phenomenon. We find that amines can be adsorbed only on apex Au atom, while thiolate group can be attached equally well to undercoordinated and clean Au surfaces. Our calculations show that only one adsorption geo metry is sterically and...
June 28, 2004
We present a simple and reliable method for making electrical contacts to small organic molecules with thiol endgroups. Nanometer-scale gaps between metallic electrodes have been fabricated by passing a large current through a lithographically-patterned Au-line with appropriate thickness. Under appropriate conditions, the passage of current breaks the Au-line, creating two opposite facing electrodes separated by a gap comparable to the length of small organic molecules. Curre...
March 20, 2013
We report state-of-the-art atomistic simulations combined with high-fidelity conductance calculations to probe structure-conductance relationships in Au-benzenedithiolate(BDT)-Au junctions under elongation. Our results demonstrate that large increases in conductance are associated with the formation of monatomic chains (MACs) of Au atoms directly connected to BDT. An analysis of the electronic structure of the simulated junctions reveals that enhancement in the s-like states ...