November 1, 2006
In the preceding paper, we developed an athermal shear-transformation-zone (STZ) theory of amorphous plasticity. Here we use this theory in an analysis of numerical simulations of plasticity in amorphous silicon by Demkowicz and Argon (DA). In addition to bulk mechanical properties, those authors observed internal features of their deforming system that challenge our theory in important ways. We propose a quasithermodynamic interpretation of their observations in which the effective disorder temperature, generated by mechanical deformation well below the glass temperature, governs the behavior of other state variables that fall in and out of equilibrium with it. Our analysis points to a limitation of either the step-strain procedure used by DA in their simulations, or the STZ theory in its ability to describe rapid transients in stress-strain curves, or perhaps to both. Once we allow for this limitation, we are able to bring our theoretical predictions into accurate agreement with the simulations.
Similar papers 1
November 1, 2006
We develop an athermal version of the shear-transformation-zone (STZ) theory of amorphous plasticity in materials where thermal activation of irreversible molecular rearrangements is negligible or nonexistent. In many respects, this theory has broader applicability and yet is simpler than its thermal predecessors. For example, it needs no special effort to assure consistency with the laws of thermodynamics, and the interpretation of yielding as an exchange of dynamic stabilit...
May 14, 2004
This investigation extends earlier studies of a shear-transformation-zone (STZ) theory of plastic deformation in amorphous solids. My main purpose here is to explore the possibility that the configurational degrees of freedom of such systems fall out of thermodynamic equilibrium with the heat bath during persistent mechanical deformation, and that the resulting state of configurational disorder may be characterized by an effective temperature. The further assumption that the ...
April 27, 2010
Since the 1970's, theories of deformation and failure of amorphous, solidlike materials have started with models in which stress-driven, molecular rearrangements occur at localized flow defects via "shear transformations". This picture is the basis for the modern theory of "shear transformation zones" (STZ's), which is the focus of this review. We begin by describing the structure of the theory in general terms and by showing several applications, specifically: interpretation...
November 4, 2003
We extend our earlier shear-transformation-zone (STZ) theory of amorphous plasticity to include the effects of thermally assisted molecular rearrangements. This version of our theory is a substantial revision and generalization of conventional theories of flow in noncrystalline solids. As in our earlier work, it predicts a dynamic transition between jammed and flowing states at a yield stress. Below that yield stress, it now describes thermally assisted creep. We show that th...
December 3, 2007
The shear-transformation-zone (STZ) theory of plastic deformation in glass-forming materials is reformulated in light of recent progress in understanding the roles played the effective disorder temperature and entropy flow in nonequilibrium situations. A distinction between fast and slow internal state variables reduces the theory to just two coupled equations of motion, one describing the plastic response to applied stresses, and the other the dynamics of the effective tempe...
May 22, 2003
We use considerations of energy balance and dissipation to derive a self-consistent version of the shear-transformation-zone (STZ) theory of plastic deformation in amorphous solids. The theory is generalized to include arbitrary spatial orientations of STZs. Continuum equations for elasto-plastic material and their energy balance properties are discussed.
September 29, 2010
The last decade has seen major progresses in studies of elementary mechanisms of deformation in amorphous materials. Here, we start with a review of physically-based theories of plasticity, going back to the identification of "shear-transformations" as early as the 70's. We show how constructive criticism of the theoretical models permits to formulate questions concerning the role of structural disorder, mechanical noise, and long-ranged elastic interactions. These questions ...
March 9, 2009
We use the internal-variable, effective-temperature thermodynamics developed in two preceding papers to reformulate the shear-transformation-zone (STZ) theory of amorphous plasticity. As required by the preceding analysis, we make explicit approximations for the energy and entropy of the STZ internal degrees of freedom. We then show that the second law of thermodynamics constrains the STZ transition rates to have an Eyring form as a function of the effective temperature. Fina...
December 10, 1997
We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plast...
January 2, 2003
We use energetic considerations to deduce the form of a previously uncertain coupling term in the shear-transformation-zone (STZ) theory of plastic deformation in amorphous solids. As in the earlier versions of the STZ theory, the onset of steady deformation at a yield stress appears here as an exchange of dynamic stability between jammed and plastically deforming states. We show how an especially simple ``quasilinear'' version of this theory accounts qualitatively for many f...