February 1, 2014
In the last three decades, zero-dimensional, one-dimensional, and two-dimensional carbon nanomaterials (i.e., fullerenes, carbon nanotubes, and graphene, respectively) have attracted significant attention from the scientific community due to their unique electronic, optical, thermal, mechanical, and chemical properties. While early work showed that these properties could enable high performance in selected applications, issues surrounding structural inhomogeneity and imprecis...
March 1, 2010
In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the mono...
April 29, 2011
This short theoretical review deals with some essential ingredients for the understanding of the quantum Hall effect in graphene in comparison with the effect in conventional two-dimensional electron systems with a parabolic band dispersion. The main difference between the two systems stems from the "ultra-relativistic" character of the low-energy carriers in graphene, which are described in terms of a Dirac equation, as compared to the non-relativistic Schr\"odinger equation...
August 3, 2011
Graphene has a multitude of striking properties that make it an exceedingly attractive material for various applications, many of which will emerge over the next decade. However, one of the most promising applications lie in exploiting its peculiar electronic properties which are governed by its electrons obeying a linear dispersion relation. This leads to the observation of half integer quantum hall effect and the absence of localization. The latter is attractive for graphen...
April 17, 2010
Electronic properties of two-dimensional allotropes of carbon, such as graphene and its bilayer, multi-layer epitaxial graphene, few-layer Bernal-stacked graphene, as well as of three-dimensional bulk graphite are reviewed from the viewpoint of recent optical spectroscopy studies. Attention is focused on relativistic-like character of quasi particles in these systems, which are referred to as massless or massive Dirac fermions.
October 29, 2011
This review examines the properties of graphene from an experimental perspective. The intent is to review the most important experimental results at a level of detail appropriate for new graduate students who are interested in a general overview of the fascinating properties of graphene. While some introductory theoretical concepts are provided, including a discussion of the electronic band structure and phonon dispersion, the main emphasis is on describing relevant experimen...
December 4, 2013
Molecular-crystalline duality of graphene ensures a tight alliance of its physical and chemical natures, each of which is unique in its own way. The paper examines the physical-chemical harmony and/or confrontation in terms of the molecular theory of graphene. Chemistry that is consistent with graphene physics expectations involves: small mass of carbon atoms, which provides a lightweight material; sp2 configuration of the atoms valence electrons, ensuring a flat 2D structure...
June 27, 2005
We present a theoretical description of the electronic properties of graphene in the presence of disorder, electron-electron interactions, and particle-hole symmetry breaking. We show that while particle-hole asymmetry, long-range Coulomb interactions, and extended defects lead to the phenomenon of self-doping, local defects determine the transport and spectroscopic properties. Our results explain recent experiments in graphitic devices and predict new electronic behavior.
September 13, 2005
Electronic properties of materials are commonly described by quasiparticles that behave as non-relativistic electrons with a finite mass and obey the Schroedinger equation. Here we report a condensed matter system where electron transport is essentially governed by the Dirac equation and charge carriers mimic relativistic particles with zero mass and an effective "speed of light" c* ~10^6m/s. Our studies of graphene - a single atomic layer of carbon - have revealed a variety ...
March 24, 2010
Since its inception in 2001, the science and technology of epitaxial graphene on hexagonal silicon carbide has matured into a major international effort and is poised to become the first carbon electronics platform. A historical perspective is presented and the unique electronic properties of single and multilayered epitaxial graphenes on electronics grade silicon carbide are reviewed. Early results on transport and the field effect in Si-face grown graphene monolayers provid...