January 25, 2007
We present an efficient perturbative method to obtain both static and dynamic polarizabilities and hyperpolarizabilities of complex electronic systems. This approach is based on the solution of a frequency dependent Sternheimer equation, within the formalism of time-dependent density functional theory, and allows the calculation of the response both in resonance and out of resonance. Furthermore, the excellent scaling with the number of atoms opens the way to the investigation of response properties of very large molecular systems. To demonstrate the capabilities of this method, we implemented it in a real-space (basis-set free) code, and applied it to benchmark molecules, namely CO, H2O, and paranitroaniline (PNA). Our results are in agreement with experimental and previous theoretical studies, and fully validate our approach.
Similar papers 1
September 16, 2024
We present an efficient momentum based perturbation scheme to evaluate polarizability tensors of small molecules and at the fraction of the computational cost compared to conventional energy based perturbation schemes. Furthermore, the simplicity of the scheme allows for the seamless integration into modern quantum chemistry codes. We apply the method to systems where the wavefunctions are described on a real-space grid and are therefore not subject to finite size basis set e...
August 17, 2005
Using a super-operator formulation of linearized time-dependent density-functional theory, the dynamical polarizability of a system of interacting electrons is given a matrix continued-fraction representation whose coefficients can be obtained from the non-symmetric block-Lanczos method. The resulting algorithm allows for the calculation of the {\em full spectrum} of a system with a computational workload which is only a few times larger than that needed for {\em static} pola...
December 27, 2021
In this work we present a derivation of the real-time time-dependent orbital-optimized M{\o}ller-Plesser TDOMP2 and its biorthogonal companion, time-dependent non-orthogonal OMP2 (TDNOMP2), theory starting from the time-dependent bivariational principle and a parametrization based on the exponential orbital-rotation operator formulation commonly used in time-independent molecular electronic-structure theory. We apply the TDOMP2 method to extract absorption spectra and frequen...
October 11, 2024
We present the theory, implementation, and benchmarking of a real-time time-dependent density functional theory (RT-TDDFT) module within the RMG code, designed to simulate the electronic response of molecular systems to external perturbations. Our method offers insights into non-equilibrium dynamics and excited states across a diverse range of systems, from small organic molecules to large metallic nanoparticles. Benchmarking results demonstrate excellent agreement with estab...
March 2, 2018
Within density-functional theory, perturbation theory~(PT) is the state-of-the-art formalism for assessing the response to homogeneous electric fields and the associated material properties, e.g., polarizabilities, dielectric constants, and Raman intensities. Here we derive a real-space formulation of PT and present an implementation within the all-electron, numeric atom-centered orbitals electronic structure code FHI-aims that allows for massively-parallel calculations. As d...
January 9, 2008
We introduce a new implementation of time-dependent density-functional theory which allows the \emph{entire} spectrum of a molecule or extended system to be computed with a numerical effort comparable to that of a \emph{single} standard ground-state calculation. This method is particularly well suited for large systems and/or large basis sets, such as plane waves or real-space grids. By using a super-operator formulation of linearized time-dependent density-functional theory,...
January 10, 2020
Accurately predicting response properties of molecules such as the dynamic polarizability and hyperpolarizability using quantum mechanics has been a long-standing challenge with widespread applications in material and drug design. Classical simulation techniques in quantum chemistry are hampered by the exponential growth of the many-electron Hilbert space as the system size increases. In this work, we propose an algorithm for computing linear and nonlinear molecular response ...
May 30, 2000
We present an algorithm to calculate the linear response of periodic systems in the time-dependent density functional thoery, using a real-space representation of the electron wave functions and calculating the dynamics in real time. The real-space formulation increases the efficiency for calculating the interaction, and the real-time treatment decreases storage requirements and the allows the entire frequency-dependent response to be calculated at once. We give as examples t...
November 14, 2013
Recently, we have demonstrated that the problems finding a suitable adiabatic approximation in time-dependent one-body reduced density matrix functional theory can be remedied by introducing an additional degree of freedom to describe the system: the phase of the natural orbitals [Phys. Rev. Lett. 105, 013002 (2010), J. Chem. Phys. 133, 174119 (2010)]. In this article we will show in detail how the frequency-dependent response equations give the proper static limit ($\omega\t...
April 4, 2018
SALMON (Scalable Ab-initio Light-Matter simulator for Optics and Nanoscience, http://salmon-tddft.jp) is a software package for the simulation of electron dynamics and optical properties of molecules, nanostructures, and crystalline solids based on first-principles time-dependent density functional theory. The core part of the software is the real-time, real-space calculation of the electron dynamics induced in molecules and solids by an external electric field solving the ti...