June 3, 2013
The study of graphene, since its discovery around 2004, is possibly the largest and fastest growing field of research in material science, because of its exotic mechanical, thermal, electronic, optical and chemical properties. The studies of graphene have also led to further research in exploring the field of two dimensional (2D) systems in general. For instance, a number of other 2D crystals (not based on carbon, e.g., boronitrene, silicone, graphane, etc.) have been synthes...
March 14, 2007
Graphene is the first example of truly two-dimensional crystals - it's just one layer of carbon atoms. It turns out to be a gapless semiconductor with unique electronic properties resulting from the fact that charge carriers in graphene demonstrate charge-conjugation symmetry between electrons and holes and possess an internal degree of freedom similar to ``chirality'' for ultrarelativistic elementary particles. It provides unexpected bridge between condensed matter physics a...
June 3, 2014
Graphene is a one-atom-thick sheet of carbon atoms arranged in a honeycomb lattice. It was first obtained by exfoliation of graphite in 2004 and has since evolved into a thriving research topic because of its attractive mechanical, thermal, and electrical properties. Graphene's unique electrical properties derive from the relativistic nature of its quasiparticles, resulting in exceptionally high electron mobility. Graphene promises to revolutionize many applications, ranging ...
December 20, 2006
Carbon is one of the most intriguing elements in the Periodic Table. It forms many allotropes, some being known from ancient times (diamond and graphite) and some discovered ten to twenty years ago (fullerenes, nanotubes). Quite interestingly, the two-dimensional form (graphene) has been obtained only very recently, and immediately attracted great deal of attention. Electrons in graphene, obeying linear dispersion relation, behave like massless relativistic particles, which r...
December 7, 2010
Graphene has been known for a long time but only recently has its potential for electronics been recognized. Its history is recalled starting from early graphene studies. A critical insight in June, 2001 brought to light that graphene could be used for electronics. This was followed by a series of proposals and measurements. The Georgia Institute of Technology (GIT) graphene electronics research project was first funded, by Intel in 2003, and later by the NSF in 2004 and the ...
December 13, 2012
Graphene is at the centre of an ever growing research effort due to its unique properties, interesting for both fundamental science and applications. A key requirement for applications is the development of industrial-scale, reliable, inexpensive production processes. Here we review the state of the art of graphene preparation, production, placement and handling. Graphene is just the first of a new class of two dimensional materials, derived from layered bulk crystals. Most o...
May 8, 2011
Since the discovery of graphene -a single layer of carbon atoms arranged in a honeycomb lattice - it was clear that this truly is a unique material system with an unprecedented combination of physical properties. Graphene is the thinnest membrane present in nature -just one atom thick- it is the strongest material, it is transparent and it is a very good conductor with room temperature charge mobilities larger than the typical mobilities found in silicon. The significance pla...
February 20, 2015
Atomically thin crystals have recently been the focus of attention in particular after the synthesis of graphene, a monolayer hexagonal crystal structure of carbon. In this novel material class the chemically derived graphenes have attracted tremendous interest. It was shown that although bulk graphite is a chemically inert material, the surface of single layer graphene is rather reactive against individual atoms. So far, synthesis of several graphene derivatives have been re...
December 4, 2013
Molecular-crystalline duality of graphene ensures a tight alliance of its physical and chemical natures, each of which is unique in its own way. The paper examines the physical-chemical harmony and/or confrontation in terms of the molecular theory of graphene. Chemistry that is consistent with graphene physics expectations involves: small mass of carbon atoms, which provides a lightweight material; sp2 configuration of the atoms valence electrons, ensuring a flat 2D structure...
February 17, 2015
Graphene, a single atomic layer of graphitic carbon, has attracted intense attention due to its extraordinary properties that make it a suitable material for a wide range of technological applications. Large-area graphene films, which are necessary for industrial applications, are typically polycrystalline, that is, composed of single-crystalline grains of varying orientation joined by grain boundaries. Here, we present a review of the large body of research reported in the p...