March 9, 2007
Similar papers 2
May 9, 2011
We derive the large deviation function, which provides the large-time full counting statistics for the charge transfer, in the non-equilibrium steady state of the resonant-level model. The general form of this function in free fermion models, in terms of transmission coefficients, was proposed by Levitov and Lesovik in 1993 using a particular measurement set-up involving an interacting spin. It was later suggested to hold as well for a proper quantum mechanical measurement of...
July 30, 1997
We study the partition functions of quantum impurity problems in the domain of complex applied bias for its relation to the non-equilibrium current suggested by Fendley, Lesage and Saleur (cond-mat/9510055). The problem is reformulated as a certain generalization of the linear response theory that accomodates an additional complex variable. It is shown that the mentioned relation holds in a rather generic case in the linear response limit, or under certain condition out of eq...
February 26, 2007
Recently the authors developed a scattering approach that allows for a complete description of the steady-state physics of quantum-impurities in and out of equilibrium. Quantum impurities are described using scattering eigenstates defined ab initio on the open, infinite line with asymptotic boundary conditions imposed by the leads. The scattering states on the open line are constructed for integrable quantum-impurity models by means of a significant generalization of the Beth...
April 2, 2018
Quantum impurity models play an important role in many areas of physics from condensed matter to AMO and quantum information. They are important models for many physical systems but also provide key insights to understanding much more complicated scenarios. In this paper we introduce a simplified method to describe the thermodynamic properties of integrable quantum impurity models. We show this method explicitly using the anisotropic Kondo and the interacting resonant level m...
January 28, 2013
In this paper we develop a method to describe perturbatively the entanglement entropy in a simple impurity model, the interacting resonant level model (IRLM), at low energy (i.e. in the strong coupling regime). We use integrability results or the Kondo model to describe the infra-red fixed point, conformal field theory techniques initially developped by Cardy and Calabrese and a quantization scheme that allows one to compute exactly Renyi entropies at arbitrary order in $1/T_...
October 18, 2022
We present a solver for correlated impurity problems out of equilibrium based on a combination of the so-called auxiliary master equation approach (AMEA) and the configuration interaction expansion. Within AMEA one maps the original impurity model onto an auxiliary open quantum system with a restricted number of bath sites which can be addressed by numerical many-body approaches such as Lanczos/Arnoldi exact diagonalization (ED) or matrix product states (MPS). While the mappi...
April 27, 2010
By using two independent and complementary approaches, we compute exactly the shot noise in an out-of-equilibrium interacting impurity model, the Interacting Resonant Level model at its self-dual point. An analytical approach based on the Thermodynamical Bethe Ansatz allows to obtain the density matrix in the presence of a bias voltage, which in turn allows for the computation of any observable. A time-dependent Density Matrix Renormalization Group technique, that has proven ...
November 15, 2012
The resonant-level model represents a paradigmatic quantum system which serves as a basis for many other quantum impurity models. We provide a comprehensive analysis of the non-equilibrium transport near a quantum phase transition in a spinless dissipative resonant-level model, extending earlier work [Phys. Rev. Lett. 102, 216803 (2009)]. A detailed derivation of a rigorous mapping of our system onto an effective Kondo model is presented. A controlled energy-dependent renorma...
March 20, 2008
We present a method for the calculation of dynamical correlation functions of quantum impurity systems out of equilibrium using Wilson's numerical renormalization group. Our formulation is based on a complete basis set of the Wilson chain and embeds the recently derived algorithm for equilibrium spectral functions. Our method fulfills the spectral weight conserving sum-rule exactly by construction. A local Coulomb repulsion $U>0$ is switched on at $t=0$, and the asymptotic st...
August 21, 2017
The numerical renormalization group (NRG) is tailored to describe interacting impurity models in equilibrium, but faces limitations for steady-state nonequilibrium, arising, e.g., due to an applied bias voltage. We show that these limitations can be overcome by describing the thermal leads using a thermofield approach, integrating out high energy modes using NRG, and then treating the nonequilibrium dynamics at low energies using a quench protocol, implemented using the time-...