February 3, 1993
Similar papers 3
September 29, 1995
I attempt to give a pedagogical overview of the progress which has occurred during the past decade in the description of one-dimensional correlated fermions. Fermi liquid theory based on a quasi-particle picture, breaks down in one dimension because of the Peierls divergence and because of charge-spin separation. It is replaced by a Luttinger liquid whose elementary excitations are collective charge and spin modes, based on the exactly solvable Luttinger model. I review this ...
December 26, 1997
We show that the one-dimensional (1D) electron systems can also be described by Landau's phenomenological Fermi-liquid theory. Most of the known results derived from the Luttinger-liquid theory can be retrieved from the 1D Fermi-liquid theory. Exact correspondence between the Landau parameters and Haldane parameters is established. The exponents of the dynamical correlation functions and the impurity problem are also discussed based on the finite size corrections of element...
February 5, 2009
We consider the problem of a single particle interacting with $N$ identical fermions, at zero temperature and in one dimension. We calculate the binding energy as well as the effective mass of the single particle. We use an approximate method developed in the three-dimensional case, where the Hilbert space for the excited states of the $N$ fermions is restricted to have at most two particle-hole pairs. When the mass of the single particle is equal to the fermion mass, we find...
February 6, 2002
We consider a system of one-dimensional non-interacting fermions in external harmonic confinement. Using an efficient Green's function method we evaluate the exact profiles and the pair correlation function, showing a direct signature of the Fermi statistics and of the single quantum-level occupancy. We also study the dynamical properties of the gas, obtaining the spectrum both in the collisionless and in the collisional regime. Our results apply as well to describe a one-dim...
August 26, 2005
We propose an approach to the problem of low but finite temperature dynamical correlation functions in integrable one-dimensional models with a spectral gap. The approach is based on the analysis of the leading singularities of the operator matrix elements and is not model specific. We discuss only models with well defined asymptotic states. For such models the long time, large distance asymptotics of the correlation functions fall into two universality classes. These classes...
October 21, 2004
This manuscript is based on the Summary and Overview talk given at the "The International Conference of Strongly Correlated Electronic Systems" (SCES '04), July 26-30, at Karlsruhe, Germany. After highlighting some of the principal new experimental developments in heavy fermions presented at the conference, I turn to two kinds of theoretical questions. (1) What is understood of the fermi-liquid state of the heavy fermions and what is not, but may reasonably well be understood...
February 16, 2005
The level of current understanding of the physics of time-dependent strongly correlated quantum systems is far from complete, principally due to the lack of effective controlled approaches. Recently, there has been progress in the development of approaches for one-dimensional systems. We describe recent developments in the construction of numerical schemes for general (one-dimensional) Hamiltonians: in particular, schemes based on exact diagonalization techniques and on the d...
October 6, 2011
For many years, the Luttinger liquid theory has served as a useful paradigm for the description of one-dimensional (1D) quantum fluids in the limit of low energies. This theory is based on a linearization of the dispersion relation of the particles constituting the fluid. We review the recent progress in understanding 1D quantum fluids beyond the low-energy limit, where the nonlinearity of the dispersion relation becomes essential. The novel methods which have been developed ...
June 10, 2003
We compute correlation functions for one-dimensional electron systems which spin and charge degrees of freedom are coupled through spin-orbit coupling. Charge density waves, spin density waves, singlet- triplet- superconducting fluctuations are studied. We show that the spin-orbit interaction modify the exponents and the phase diagram of the system, changing the dominant fluctuations and making new susceptibilities diverge for low temperature.
March 9, 2023
We consider the many-body ground state of polarized fermions interacting via zero-range $\mathfrak{p}$-wave forces in a one-dimensional geometry. We rigorously prove that in the limit of infinite attractions spectral properties of any-order reduced density matrix describing arbitrary subsystem are completely independent of the shape of an external potential. It means that quantum correlations between any two subsystems are in this limit insensitive to the confinement. In addi...