August 25, 1993
Similar papers 4
July 30, 2004
The conductance of an open quench-disordered two-dimensional (2D) electron system subject to an in-plane magnetic field is calculated within the framework of conventional Fermi liquid theory applied to actually a three-dimensional system of spinless electrons confined to a highly anisotropic (planar) near-surface potential well. Using the calculation method suggested in this paper, the magnetic field piercing a finite range of infinitely long system of carriers is treated as ...
March 25, 2010
We discuss the development of a sensitive electrometer that utilizes a two-dimensional electron gas (2DEG) in the quantum Hall regime. As a demonstration, we measure the evolution of the Landau levels in a second, nearby 2DEG as the applied perpendicular magnetic field is changed, and extract an effective mass for electrons in GaAs that agrees within experimental error with previous measurements.
April 14, 2007
We have observed cyclotron resonance in a high-mobility GaAs/AlGaAs two-dimensional electron gas by using the techniques of terahertz time-domain spectroscopy combined with magnetic fields. From this, we calculate the real and imaginary parts of the diagonal elements of the magnetoconductivity tensor, which in turn allows us to extract the concentration, effective mass, and scattering time of the electrons in the sample. We demonstrate the utility of ultrafast terahertz spect...
February 25, 2004
In this paper we present a detailed theoretical analysis of the cyclotron resonance in metals in the magnetic field directed along a normal to the surface of a sample. We show that this resonance occurs due to local geometry of the Fermi surface of a metal. When the Fermi surface (FS) includes segments where its curvature turns zero or diverges, this could give rise to resonance features in the frequency/magnetic field dependence of the surface impedance or its derivative wit...
January 21, 2016
It is established that cyclotron resonance (CR) in a high-quality GaAs/AlGaAs two-dimensional electron system (2DES) originates as a \textit{pure} resonance, that does not hybridize with dimensional magnetoplasma excitations. The magnetoplasma resonances form a fine structure of the CR. The observed fine structure of the CR results from the interplay between coherent radiative and incoherent collisional mechanisms of 2D plasma relaxation. We show that the range of 2DES fillin...
January 11, 1995
A detailed analysis of the capacitance of gated GaAs/AlGaAs heterostructures is presented. The nonlinear dependence of the capacitance on the gate voltage and in-plane magnetic field is discussed together with the capacitance quantum steps connected with a population of higher 2D gas subbands. The results of full self-consistent numerical calculations are compared to recent experimental data.
August 25, 2003
We have measured the magnetization of a dual-subband two-dimensional electron gas, confined in a GaAs/AlGaAs heterojunction. In contrast to two-dimensional electron gases with a single subband, we observe non-1/B-periodic, triangularly shaped oscillations of the magnetization with an amplitude significantly less than $1 \mu_{\mathrm{B}}^*$ per electron. All three effects are explained by a field dependent self-consistent model, demonstrating the shape of the magnetization is ...
January 5, 2005
Magnetic field suppression of the tunneling between disordered 2D electron systems in GaAs around zero bias voltage has been studied. Magnetic field B normal to the layers induces a dip in the tunneling density of states (TDOS) centered precisely at the Fermi level, i.e. soft tunneling gap. The soft gap has a linear form with finite TDOS diminishing with B at the Fermi level. Driven by magnetic field the transition soft-hard gap has been observed, i.e. the TDOS vanishes in th...
August 12, 1993
The capacitance of a double-heterojunction structure with a wide GaAs undoped layer embedded between two selectively doped AlGaAs barriers is calculated self-consistently as a function of intensity of the in-plane magnetic field. With increasing field intensity the capacitance initially increases and after reaching a maximum decreases toward a high field limit which is less than its zero field value. This behaviour is attributed to 'breathing', or charge redistribution, of th...
March 26, 2007
We have fabricated high-mobility, two-dimensional electron gases in a GaAs quantum well on cylindrical surfaces, which allows to investigate the magnetotransport behavior under varying magnetic fields along the current path. A strong asymmetry in the quantum Hall effect appears for measurements on both sides of the conductive path. We determined the strain at the position of the quantum well. We observe ballistic transport in 8-micrometers-wide collimating structures.