January 12, 1995
Similar papers 5
June 6, 2004
We study the maturation of the antibody population following primary antigen presentation as a global optimization problem. Emphasis is placed on the trade-off between the safety of mutations that lead to local improvements to the antibody's affinity and the necessity of eventual mutations that result in global reconfigurations in the antibody's shape. The model described herein gives evidence of the underlying optimization process from which the rapidity and consistency of t...
December 30, 2015
In spite of their many facets, the phenomena of autoimmunity and immunodeficiency seem to be related to each other through the subtle links connecting retroviral mutation and action to immune response and adaptation. In a previous work, we introduced a network model of how a set of interrelated genotypes (called a quasispecies, in the stationary state) and a set of interrelated idiotypes (an idiotypic network) interact. That model, which does not cover the case of a retrovira...
July 25, 2014
The repertoire of lymphocyte receptors in the adaptive immune system protects organisms from diverse pathogens. A well-adapted repertoire should be tuned to the pathogenic environment to reduce the cost of infections. We develop a general framework for predicting the optimal repertoire that minimizes the cost of infections contracted from a given distribution of pathogens. The theory predicts that the immune system will have more receptors for rare antigens than expected from...
March 27, 2008
The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune ...
August 23, 2013
The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self or non-self substances. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune s...
June 29, 2001
We study a dynamical system model of an idiotypic immune network with a small number of degrees of freedom, mainly focusing on the effect of a threshold above which antibodies can recognise antibodies. The response of the system to invasions by antigens is investigated in the both models with and without the threshold and it turns out that the system changes in a desirable direction for moderate magnitude of perturbation. direction for moderate magnitude of perturbation. Also...
May 30, 2013
The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approache...
June 8, 2010
Innate immunity now occupies a central role in immunology. However, artificial immune system models have largely been inspired by adaptive not innate immunity. This paper reviews the biological principles and properties of innate immunity and, adopting a conceptual framework, asks how these can be incorporated into artificial models. The aim is to outline a meta-framework for models of innate immunity.
May 13, 2008
The human immune system protects the human body against various pathogens like e.g. biological viruses and bacteria. Artificial immune systems reuse the architecture, organization, and workflows of the human immune system for various problems in computer science. In the network security, the artificial immune system is used to secure a network and its nodes against intrusions like viruses, worms, and trojans. However, these approaches are far away from production where they a...
October 29, 2019
The adaptive immune system relies on diversity of its repertoire of receptors to protect the organism from a great variety of pathogens. Since the initial repertoire is the result of random gene rearrangement, binding of receptors is not limited to pathogen-associated antigens but also includes self antigens. There is a fine balance between having a diverse repertoire, protecting from many different pathogens, and yet reducing its self-reactivity as far as possible to avoid d...